Matches in SemOpenAlex for { <https://semopenalex.org/work/W2217966358> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2217966358 abstract "In order to obtain superior performances for reversible axial turbomachines, it is important to know the behaviour of the axial profile cascades in direct and reverse flow in different operation conditions. The paper presents an anlysis of the ideal and incompressible fluid motion round these axial cascades in direct and reverse flow, using BEM. The problem solution was obtained by solving in a series of some mixed boundary-value problems for the Laplace equation in the stream function using linear elements for the domain boundary discretization. A special problem was the imposing of the Kutta-Joukovski-Carafoli condition in the trailing edge zone respectively leading edge zone of the profiles and its influence upon the velocity and pressure field on the profile boundary. In the end, the hydrodynamic assymetry was defined and some problems resulting from it were presented. The method was applied to a NACA profile cascade with pump cascade start. INTRODUCTION The solving of the direct problem of the reversible axial profile cascades means the determination of the motion with circulation around those cascades of the ideal and incompressible fluid both for the direct flow and for the reverse flow, the cascade geometry and the cinematic conditions for an accepted section as being an entrance, being given. The determination of these problems requires a supplementary boundary condition the Kutta-Joukovski-Carafoli condition namely the null velocity in the posterior stagnation point from the profile boundary. Transactions on Modelling and Simulation vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X 110 Boundary Elements THE TYPICAL ANALYSIS DOMAIN. THE BOUNDARY VALUE PROBLEM FORMULATION The analysis domain is defined by the boundaries of the two neighbouring profiles disposed at step t, and the boundary conditions on the entrance section, respectively exit section, will be considered at t/2 from the leading front respectively from the trailig front of the cascade; (Fig 1); Anton and Carte 1 1 1 . Fig.l. The analysis domain for a pump axial cascade If 012 is the fundamental plane of the motion, the potential flow condition of the ideal and incompressible fluid leads to the Laplace equation for the stream function and the velocity field is given by # = £..11),. . ijTfj The periodicity of the velocity field imposes for the l|J function Ip (x , %2 + kt) = ip (Xj, x%) + kt k (1) (2) (3) % (Xj, X, + kt) =tp,. (Xj, X,) (4) Thus we have to solve a mixt boundary-value problem with periodicity for equation (1) with the following boundary conditions on the F boundary of the Q domain for the direct flow Transactions on Modelling and Simulation vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X Boundary Elements on GF on O'C ill" @default.
- W2217966358 created "2016-06-24" @default.
- W2217966358 creator A5088612977 @default.
- W2217966358 date "1970-01-01" @default.
- W2217966358 modified "2023-09-22" @default.
- W2217966358 title "Boundary Element Method In The AnalysisOf The Hydrodynamic Assymetry At The FlowRound Reversible Axial Cascades" @default.
- W2217966358 doi "https://doi.org/10.2495/be930081" @default.
- W2217966358 hasPublicationYear "1970" @default.
- W2217966358 type Work @default.
- W2217966358 sameAs 2217966358 @default.
- W2217966358 citedByCount "0" @default.
- W2217966358 crossrefType "journal-article" @default.
- W2217966358 hasAuthorship W2217966358A5088612977 @default.
- W2217966358 hasConcept C121332964 @default.
- W2217966358 hasConcept C127413603 @default.
- W2217966358 hasConcept C131097465 @default.
- W2217966358 hasConcept C134306372 @default.
- W2217966358 hasConcept C135628077 @default.
- W2217966358 hasConcept C140820882 @default.
- W2217966358 hasConcept C180788929 @default.
- W2217966358 hasConcept C182310444 @default.
- W2217966358 hasConcept C18932819 @default.
- W2217966358 hasConcept C200114574 @default.
- W2217966358 hasConcept C2524010 @default.
- W2217966358 hasConcept C33923547 @default.
- W2217966358 hasConcept C34146451 @default.
- W2217966358 hasConcept C38349280 @default.
- W2217966358 hasConcept C42360764 @default.
- W2217966358 hasConcept C50415386 @default.
- W2217966358 hasConcept C57879066 @default.
- W2217966358 hasConcept C62354387 @default.
- W2217966358 hasConcept C63632240 @default.
- W2217966358 hasConcept C73000952 @default.
- W2217966358 hasConcept C97355855 @default.
- W2217966358 hasConceptScore W2217966358C121332964 @default.
- W2217966358 hasConceptScore W2217966358C127413603 @default.
- W2217966358 hasConceptScore W2217966358C131097465 @default.
- W2217966358 hasConceptScore W2217966358C134306372 @default.
- W2217966358 hasConceptScore W2217966358C135628077 @default.
- W2217966358 hasConceptScore W2217966358C140820882 @default.
- W2217966358 hasConceptScore W2217966358C180788929 @default.
- W2217966358 hasConceptScore W2217966358C182310444 @default.
- W2217966358 hasConceptScore W2217966358C18932819 @default.
- W2217966358 hasConceptScore W2217966358C200114574 @default.
- W2217966358 hasConceptScore W2217966358C2524010 @default.
- W2217966358 hasConceptScore W2217966358C33923547 @default.
- W2217966358 hasConceptScore W2217966358C34146451 @default.
- W2217966358 hasConceptScore W2217966358C38349280 @default.
- W2217966358 hasConceptScore W2217966358C42360764 @default.
- W2217966358 hasConceptScore W2217966358C50415386 @default.
- W2217966358 hasConceptScore W2217966358C57879066 @default.
- W2217966358 hasConceptScore W2217966358C62354387 @default.
- W2217966358 hasConceptScore W2217966358C63632240 @default.
- W2217966358 hasConceptScore W2217966358C73000952 @default.
- W2217966358 hasConceptScore W2217966358C97355855 @default.
- W2217966358 hasLocation W22179663581 @default.
- W2217966358 hasOpenAccess W2217966358 @default.
- W2217966358 hasPrimaryLocation W22179663581 @default.
- W2217966358 hasRelatedWork W1010125457 @default.
- W2217966358 hasRelatedWork W1966025180 @default.
- W2217966358 hasRelatedWork W2026198400 @default.
- W2217966358 hasRelatedWork W2027421198 @default.
- W2217966358 hasRelatedWork W2028409192 @default.
- W2217966358 hasRelatedWork W2037945253 @default.
- W2217966358 hasRelatedWork W2051329416 @default.
- W2217966358 hasRelatedWork W2056567346 @default.
- W2217966358 hasRelatedWork W2060320906 @default.
- W2217966358 hasRelatedWork W2085261907 @default.
- W2217966358 hasRelatedWork W2089454624 @default.
- W2217966358 hasRelatedWork W2105144084 @default.
- W2217966358 hasRelatedWork W2137353174 @default.
- W2217966358 hasRelatedWork W2162893748 @default.
- W2217966358 hasRelatedWork W2269356491 @default.
- W2217966358 hasRelatedWork W2371190239 @default.
- W2217966358 hasRelatedWork W2806246871 @default.
- W2217966358 hasRelatedWork W2990639664 @default.
- W2217966358 hasRelatedWork W3011847866 @default.
- W2217966358 hasRelatedWork W9385330 @default.
- W2217966358 hasVolume "1" @default.
- W2217966358 isParatext "false" @default.
- W2217966358 isRetracted "false" @default.
- W2217966358 magId "2217966358" @default.
- W2217966358 workType "article" @default.