Matches in SemOpenAlex for { <https://semopenalex.org/work/W2218047931> ?p ?o ?g. }
- W2218047931 endingPage "10" @default.
- W2218047931 startingPage "3" @default.
- W2218047931 abstract "Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems." @default.
- W2218047931 created "2016-06-24" @default.
- W2218047931 creator A5006358132 @default.
- W2218047931 creator A5014010067 @default.
- W2218047931 creator A5039341855 @default.
- W2218047931 creator A5081817597 @default.
- W2218047931 date "2016-01-01" @default.
- W2218047931 modified "2023-10-16" @default.
- W2218047931 title "Machine learning in geosciences and remote sensing" @default.
- W2218047931 cites W1605483703 @default.
- W2218047931 cites W1784197647 @default.
- W2218047931 cites W1967710116 @default.
- W2218047931 cites W1968289563 @default.
- W2218047931 cites W1969246162 @default.
- W2218047931 cites W1975246819 @default.
- W2218047931 cites W1982708770 @default.
- W2218047931 cites W1983023737 @default.
- W2218047931 cites W1992616260 @default.
- W2218047931 cites W1995265224 @default.
- W2218047931 cites W1995715026 @default.
- W2218047931 cites W1997304481 @default.
- W2218047931 cites W1997535938 @default.
- W2218047931 cites W1998404166 @default.
- W2218047931 cites W2000418695 @default.
- W2218047931 cites W2000621002 @default.
- W2218047931 cites W2002963309 @default.
- W2218047931 cites W2004199383 @default.
- W2218047931 cites W2006538047 @default.
- W2218047931 cites W2006710943 @default.
- W2218047931 cites W2009110968 @default.
- W2218047931 cites W2009455262 @default.
- W2218047931 cites W2011730493 @default.
- W2218047931 cites W2014579544 @default.
- W2218047931 cites W2020487351 @default.
- W2218047931 cites W2022695033 @default.
- W2218047931 cites W2027409234 @default.
- W2218047931 cites W2034575482 @default.
- W2218047931 cites W2042256530 @default.
- W2218047931 cites W2043299481 @default.
- W2218047931 cites W2043323004 @default.
- W2218047931 cites W2049220957 @default.
- W2218047931 cites W2049660156 @default.
- W2218047931 cites W2052575627 @default.
- W2218047931 cites W2054119472 @default.
- W2218047931 cites W2055282134 @default.
- W2218047931 cites W2057652484 @default.
- W2218047931 cites W2075070569 @default.
- W2218047931 cites W2076165558 @default.
- W2218047931 cites W2077967845 @default.
- W2218047931 cites W2078517784 @default.
- W2218047931 cites W2083944525 @default.
- W2218047931 cites W2084939434 @default.
- W2218047931 cites W2085860939 @default.
- W2218047931 cites W2086877268 @default.
- W2218047931 cites W2090716100 @default.
- W2218047931 cites W2094749864 @default.
- W2218047931 cites W2106636041 @default.
- W2218047931 cites W2109880334 @default.
- W2218047931 cites W2111825008 @default.
- W2218047931 cites W2114828048 @default.
- W2218047931 cites W2116937628 @default.
- W2218047931 cites W2121690346 @default.
- W2218047931 cites W2130530417 @default.
- W2218047931 cites W2132298364 @default.
- W2218047931 cites W2140282454 @default.
- W2218047931 cites W2144120083 @default.
- W2218047931 cites W2146362072 @default.
- W2218047931 cites W2147185485 @default.
- W2218047931 cites W2147867287 @default.
- W2218047931 cites W2150751323 @default.
- W2218047931 cites W2152579313 @default.
- W2218047931 cites W2155565603 @default.
- W2218047931 cites W2158101704 @default.
- W2218047931 cites W2161669929 @default.
- W2218047931 cites W2166786685 @default.
- W2218047931 cites W2172009270 @default.
- W2218047931 cites W2318698569 @default.
- W2218047931 cites W65738273 @default.
- W2218047931 doi "https://doi.org/10.1016/j.gsf.2015.07.003" @default.
- W2218047931 hasPublicationYear "2016" @default.
- W2218047931 type Work @default.
- W2218047931 sameAs 2218047931 @default.
- W2218047931 citedByCount "661" @default.
- W2218047931 countsByYear W22180479312016 @default.
- W2218047931 countsByYear W22180479312017 @default.
- W2218047931 countsByYear W22180479312018 @default.
- W2218047931 countsByYear W22180479312019 @default.
- W2218047931 countsByYear W22180479312020 @default.
- W2218047931 countsByYear W22180479312021 @default.
- W2218047931 countsByYear W22180479312022 @default.
- W2218047931 countsByYear W22180479312023 @default.
- W2218047931 crossrefType "journal-article" @default.
- W2218047931 hasAuthorship W2218047931A5006358132 @default.
- W2218047931 hasAuthorship W2218047931A5014010067 @default.
- W2218047931 hasAuthorship W2218047931A5039341855 @default.
- W2218047931 hasAuthorship W2218047931A5081817597 @default.
- W2218047931 hasBestOaLocation W22180479311 @default.
- W2218047931 hasConcept C102366305 @default.