Matches in SemOpenAlex for { <https://semopenalex.org/work/W2218378425> ?p ?o ?g. }
- W2218378425 endingPage "75" @default.
- W2218378425 startingPage "67" @default.
- W2218378425 abstract "In this study we consider we consider a prototypical example of a <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$</tex-math> </inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {T}$</tex-math></inline-formula> -symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$ </tex-math></inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {T}$</tex-math></inline-formula> -phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$</tex-math></inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {T}$</tex-math> </inline-formula> -symmetric model of the solutions of the corresponding Hamiltonian model and find that the solutions can be continued robustly as stable ones all the way up to the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$</tex-math> </inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {T}$</tex-math></inline-formula> -transition threshold. In the latter, they degenerate into linear waves. We also examine the dynamics of the model. Given the stability of the waveforms in the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$</tex-math></inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX> $mathcal {T}$</tex-math></inline-formula> -exact phase, we consider them as initial conditions for parameters outside of that phase. We find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding “quench”. The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$(1,1)$</tex-math></inline-formula> symmetry. Finally, we explore some special, analytically tractable, but not <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {P}$</tex-math> </inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$mathcal {T}$</tex-math></inline-formula> -symmetric solutions in the massless limit of the model." @default.
- W2218378425 created "2016-06-24" @default.
- W2218378425 creator A5011709906 @default.
- W2218378425 creator A5016952693 @default.
- W2218378425 creator A5054719860 @default.
- W2218378425 creator A5063889525 @default.
- W2218378425 creator A5076612078 @default.
- W2218378425 creator A5084330621 @default.
- W2218378425 creator A5091910309 @default.
- W2218378425 date "2016-09-01" @default.
- W2218378425 modified "2023-10-01" @default.
- W2218378425 title "Solitary Waves of a <inline-formula> <tex-math notation=LaTeX>$mathcal {P}$</tex-math> </inline-formula><inline-formula> <tex-math notation=LaTeX>$mathcal {T}$</tex-math> </inline-formula>-Symmetric Nonlinear Dirac Equation" @default.
- W2218378425 cites W1531935167 @default.
- W2218378425 cites W1535034839 @default.
- W2218378425 cites W1665371518 @default.
- W2218378425 cites W1679473116 @default.
- W2218378425 cites W1911969426 @default.
- W2218378425 cites W1965636595 @default.
- W2218378425 cites W1965727046 @default.
- W2218378425 cites W1968465914 @default.
- W2218378425 cites W1969624501 @default.
- W2218378425 cites W1971064187 @default.
- W2218378425 cites W1986806799 @default.
- W2218378425 cites W1991157567 @default.
- W2218378425 cites W1991389039 @default.
- W2218378425 cites W1992225535 @default.
- W2218378425 cites W1994266055 @default.
- W2218378425 cites W1995703657 @default.
- W2218378425 cites W1998540193 @default.
- W2218378425 cites W1999786383 @default.
- W2218378425 cites W2013201091 @default.
- W2218378425 cites W2045505006 @default.
- W2218378425 cites W2047699813 @default.
- W2218378425 cites W2061088660 @default.
- W2218378425 cites W2072286328 @default.
- W2218378425 cites W2076939352 @default.
- W2218378425 cites W2099193168 @default.
- W2218378425 cites W2113101487 @default.
- W2218378425 cites W2113215129 @default.
- W2218378425 cites W2117062221 @default.
- W2218378425 cites W2126665790 @default.
- W2218378425 cites W2143841922 @default.
- W2218378425 cites W2152074534 @default.
- W2218378425 cites W2173346706 @default.
- W2218378425 cites W2963131777 @default.
- W2218378425 cites W2963453059 @default.
- W2218378425 cites W2964141546 @default.
- W2218378425 cites W3100006148 @default.
- W2218378425 cites W3100453153 @default.
- W2218378425 cites W3101346375 @default.
- W2218378425 cites W3104668646 @default.
- W2218378425 cites W3105402080 @default.
- W2218378425 cites W4240811763 @default.
- W2218378425 doi "https://doi.org/10.1109/jstqe.2015.2485607" @default.
- W2218378425 hasPublicationYear "2016" @default.
- W2218378425 type Work @default.
- W2218378425 sameAs 2218378425 @default.
- W2218378425 citedByCount "15" @default.
- W2218378425 countsByYear W22183784252015 @default.
- W2218378425 countsByYear W22183784252016 @default.
- W2218378425 countsByYear W22183784252017 @default.
- W2218378425 countsByYear W22183784252018 @default.
- W2218378425 countsByYear W22183784252019 @default.
- W2218378425 countsByYear W22183784252020 @default.
- W2218378425 countsByYear W22183784252021 @default.
- W2218378425 crossrefType "journal-article" @default.
- W2218378425 hasAuthorship W2218378425A5011709906 @default.
- W2218378425 hasAuthorship W2218378425A5016952693 @default.
- W2218378425 hasAuthorship W2218378425A5054719860 @default.
- W2218378425 hasAuthorship W2218378425A5063889525 @default.
- W2218378425 hasAuthorship W2218378425A5076612078 @default.
- W2218378425 hasAuthorship W2218378425A5084330621 @default.
- W2218378425 hasAuthorship W2218378425A5091910309 @default.
- W2218378425 hasBestOaLocation W22183784252 @default.
- W2218378425 hasConcept C118615104 @default.
- W2218378425 hasConcept C136119220 @default.
- W2218378425 hasConcept C202444582 @default.
- W2218378425 hasConcept C33923547 @default.
- W2218378425 hasConcept C45357846 @default.
- W2218378425 hasConcept C94375191 @default.
- W2218378425 hasConceptScore W2218378425C118615104 @default.
- W2218378425 hasConceptScore W2218378425C136119220 @default.
- W2218378425 hasConceptScore W2218378425C202444582 @default.
- W2218378425 hasConceptScore W2218378425C33923547 @default.
- W2218378425 hasConceptScore W2218378425C45357846 @default.
- W2218378425 hasConceptScore W2218378425C94375191 @default.
- W2218378425 hasFunder F4320334801 @default.
- W2218378425 hasIssue "5" @default.
- W2218378425 hasLocation W22183784251 @default.
- W2218378425 hasLocation W22183784252 @default.
- W2218378425 hasLocation W22183784253 @default.
- W2218378425 hasLocation W22183784254 @default.
- W2218378425 hasOpenAccess W2218378425 @default.
- W2218378425 hasPrimaryLocation W22183784251 @default.
- W2218378425 hasRelatedWork W1989372642 @default.
- W2218378425 hasRelatedWork W2063829785 @default.
- W2218378425 hasRelatedWork W2105687903 @default.
- W2218378425 hasRelatedWork W2332694326 @default.