Matches in SemOpenAlex for { <https://semopenalex.org/work/W2218451251> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2218451251 abstract "In this paper, I applied several machine learning techniques, including Latent Dirichlet allocation (LDA), deep Convolutional Neural Networks (CNN) as well as Ranking SVM to build a restaurant recommendation system using the Yelp Dataset. The idea is that, compared to algorithms that are previously commonly used in recommendation system, i.e. Pearson similarity and clustering algorithms, the application of machine learning techniques such as LDA, CNN and SVM to recommendation has been a new area and not systematically studied yet. Topic models such as LDA could allow us to learn the latent subtopics in review texts, which then can be used in personalized recommendation. Deep CNN could be used to extract the underlying features from food images and combined with Ranking SVM to provide users with the best food image of a restaurant. In this paper, I made several attempts to introduce these machine learning techniques to the construction of a restaurant recommender engine and results have shown that the efficiency of the recommendation system could be largely improved with these techniques." @default.
- W2218451251 created "2016-06-24" @default.
- W2218451251 creator A5040938049 @default.
- W2218451251 date "2015-01-01" @default.
- W2218451251 modified "2023-10-14" @default.
- W2218451251 title "Application of machine learning techniques to recommendation system" @default.
- W2218451251 cites W1849277567 @default.
- W2218451251 cites W2030144199 @default.
- W2218451251 cites W2047221353 @default.
- W2218451251 cites W2096152098 @default.
- W2218451251 cites W2147800946 @default.
- W2218451251 cites W2174706414 @default.
- W2218451251 cites W252794473 @default.
- W2218451251 cites W2952186347 @default.
- W2218451251 hasPublicationYear "2015" @default.
- W2218451251 type Work @default.
- W2218451251 sameAs 2218451251 @default.
- W2218451251 citedByCount "0" @default.
- W2218451251 crossrefType "journal-article" @default.
- W2218451251 hasAuthorship W2218451251A5040938049 @default.
- W2218451251 hasConcept C103278499 @default.
- W2218451251 hasConcept C108583219 @default.
- W2218451251 hasConcept C115961682 @default.
- W2218451251 hasConcept C119857082 @default.
- W2218451251 hasConcept C12267149 @default.
- W2218451251 hasConcept C124101348 @default.
- W2218451251 hasConcept C124975894 @default.
- W2218451251 hasConcept C154945302 @default.
- W2218451251 hasConcept C171686336 @default.
- W2218451251 hasConcept C189430467 @default.
- W2218451251 hasConcept C23123220 @default.
- W2218451251 hasConcept C41008148 @default.
- W2218451251 hasConcept C500882744 @default.
- W2218451251 hasConcept C557471498 @default.
- W2218451251 hasConcept C73555534 @default.
- W2218451251 hasConcept C81363708 @default.
- W2218451251 hasConceptScore W2218451251C103278499 @default.
- W2218451251 hasConceptScore W2218451251C108583219 @default.
- W2218451251 hasConceptScore W2218451251C115961682 @default.
- W2218451251 hasConceptScore W2218451251C119857082 @default.
- W2218451251 hasConceptScore W2218451251C12267149 @default.
- W2218451251 hasConceptScore W2218451251C124101348 @default.
- W2218451251 hasConceptScore W2218451251C124975894 @default.
- W2218451251 hasConceptScore W2218451251C154945302 @default.
- W2218451251 hasConceptScore W2218451251C171686336 @default.
- W2218451251 hasConceptScore W2218451251C189430467 @default.
- W2218451251 hasConceptScore W2218451251C23123220 @default.
- W2218451251 hasConceptScore W2218451251C41008148 @default.
- W2218451251 hasConceptScore W2218451251C500882744 @default.
- W2218451251 hasConceptScore W2218451251C557471498 @default.
- W2218451251 hasConceptScore W2218451251C73555534 @default.
- W2218451251 hasConceptScore W2218451251C81363708 @default.
- W2218451251 hasLocation W22184512511 @default.
- W2218451251 hasOpenAccess W2218451251 @default.
- W2218451251 hasPrimaryLocation W22184512511 @default.
- W2218451251 hasRelatedWork W2030977848 @default.
- W2218451251 hasRelatedWork W2066370905 @default.
- W2218451251 hasRelatedWork W2098573517 @default.
- W2218451251 hasRelatedWork W2293317945 @default.
- W2218451251 hasRelatedWork W2315306436 @default.
- W2218451251 hasRelatedWork W2367669713 @default.
- W2218451251 hasRelatedWork W2543738552 @default.
- W2218451251 hasRelatedWork W2558000730 @default.
- W2218451251 hasRelatedWork W2577998051 @default.
- W2218451251 hasRelatedWork W2781636776 @default.
- W2218451251 hasRelatedWork W2809136816 @default.
- W2218451251 hasRelatedWork W2908297977 @default.
- W2218451251 hasRelatedWork W2972028451 @default.
- W2218451251 hasRelatedWork W2982710923 @default.
- W2218451251 hasRelatedWork W2994214637 @default.
- W2218451251 hasRelatedWork W3082079906 @default.
- W2218451251 hasRelatedWork W3102518037 @default.
- W2218451251 hasRelatedWork W3155488829 @default.
- W2218451251 hasRelatedWork W3164642784 @default.
- W2218451251 hasRelatedWork W3191509948 @default.
- W2218451251 isParatext "false" @default.
- W2218451251 isRetracted "false" @default.
- W2218451251 magId "2218451251" @default.
- W2218451251 workType "article" @default.