Matches in SemOpenAlex for { <https://semopenalex.org/work/W2218940540> ?p ?o ?g. }
- W2218940540 endingPage "272" @default.
- W2218940540 startingPage "262" @default.
- W2218940540 abstract "Essentials•Clotting in cerebral aneurysms is a process that can either stabilize the aneurysm or lead to rupture.•A patient‐specific computational model capable of predicting cerebral aneurysm thrombosis is presented.•The different clotting outcomes highlight the importance of personalization of treatment.•Once validated, the model can be used to tailor treatment and to clarify clotting processes in aneurysms.Summary: BackgroundIn cerebral aneurysms, clotting can either stabilize the aneurysm sac via aneurysm occlusion, or it can have a detrimental effect by giving rise to embolic occlusion.ObjectiveThe work presented in this study details the development of an in silico model that combines all the salient, clinically relevant features of cerebral aneurysm clotting. A comprehensive computational model of clotting that accounts for biochemical complexity coupled with three‐dimensional hemodynamics in image‐derived patient aneurysms and in the presence of virtually implanted interventional devices is presented.MethodsThe model is developed and presented in two stages. First, a two‐dimensional computational model of clotting is presented for an idealized geometry. This enables verification of the methods with existing, physiological data before the pathological state is considered. This model is used to compare the results predicted by two different underlying biochemical cascades. The two‐dimensional model is then extended to image‐derived, three‐dimensional aneurysmal topologies by incorporating level set methods, demonstrating the potential use of this model.Results and conclusionAs a proof of concept, comparisons are then made between treated and untreated aneurysms. The prediction of different clotting outcomes for different patients demonstrates that with further development, refinement and validation, this methodology could be used for patient‐specific interventional planning. Essentials•Clotting in cerebral aneurysms is a process that can either stabilize the aneurysm or lead to rupture.•A patient‐specific computational model capable of predicting cerebral aneurysm thrombosis is presented.•The different clotting outcomes highlight the importance of personalization of treatment.•Once validated, the model can be used to tailor treatment and to clarify clotting processes in aneurysms. •Clotting in cerebral aneurysms is a process that can either stabilize the aneurysm or lead to rupture.•A patient‐specific computational model capable of predicting cerebral aneurysm thrombosis is presented.•The different clotting outcomes highlight the importance of personalization of treatment.•Once validated, the model can be used to tailor treatment and to clarify clotting processes in aneurysms. In cerebral aneurysms, clotting can either stabilize the aneurysm sac via aneurysm occlusion, or it can have a detrimental effect by giving rise to embolic occlusion. The work presented in this study details the development of an in silico model that combines all the salient, clinically relevant features of cerebral aneurysm clotting. A comprehensive computational model of clotting that accounts for biochemical complexity coupled with three‐dimensional hemodynamics in image‐derived patient aneurysms and in the presence of virtually implanted interventional devices is presented. The model is developed and presented in two stages. First, a two‐dimensional computational model of clotting is presented for an idealized geometry. This enables verification of the methods with existing, physiological data before the pathological state is considered. This model is used to compare the results predicted by two different underlying biochemical cascades. The two‐dimensional model is then extended to image‐derived, three‐dimensional aneurysmal topologies by incorporating level set methods, demonstrating the potential use of this model. As a proof of concept, comparisons are then made between treated and untreated aneurysms. The prediction of different clotting outcomes for different patients demonstrates that with further development, refinement and validation, this methodology could be used for patient‐specific interventional planning." @default.
- W2218940540 created "2016-06-24" @default.
- W2218940540 creator A5018851701 @default.
- W2218940540 creator A5084823710 @default.
- W2218940540 date "2016-02-01" @default.
- W2218940540 modified "2023-10-16" @default.
- W2218940540 title "Computational modelling of clot development in patient‐specific cerebral aneurysm cases" @default.
- W2218940540 cites W1489758714 @default.
- W2218940540 cites W1968807133 @default.
- W2218940540 cites W1987553592 @default.
- W2218940540 cites W1989188797 @default.
- W2218940540 cites W1989744107 @default.
- W2218940540 cites W1990193965 @default.
- W2218940540 cites W1994490489 @default.
- W2218940540 cites W1998762602 @default.
- W2218940540 cites W2013598501 @default.
- W2218940540 cites W2022994814 @default.
- W2218940540 cites W2023052254 @default.
- W2218940540 cites W2032980411 @default.
- W2218940540 cites W2036348577 @default.
- W2218940540 cites W2037996328 @default.
- W2218940540 cites W2042144826 @default.
- W2218940540 cites W2047786411 @default.
- W2218940540 cites W2049347141 @default.
- W2218940540 cites W2052521092 @default.
- W2218940540 cites W2057045896 @default.
- W2218940540 cites W2058161894 @default.
- W2218940540 cites W2063307775 @default.
- W2218940540 cites W2066061468 @default.
- W2218940540 cites W2073277774 @default.
- W2218940540 cites W2076475517 @default.
- W2218940540 cites W2078207049 @default.
- W2218940540 cites W2078706625 @default.
- W2218940540 cites W2083373721 @default.
- W2218940540 cites W2092246036 @default.
- W2218940540 cites W2095489676 @default.
- W2218940540 cites W2104849069 @default.
- W2218940540 cites W2105965310 @default.
- W2218940540 cites W2115327231 @default.
- W2218940540 cites W2116318228 @default.
- W2218940540 cites W2125573572 @default.
- W2218940540 cites W2132984496 @default.
- W2218940540 cites W2133370274 @default.
- W2218940540 cites W2135486988 @default.
- W2218940540 cites W2139946379 @default.
- W2218940540 cites W2141200852 @default.
- W2218940540 cites W2148693904 @default.
- W2218940540 cites W2150825819 @default.
- W2218940540 cites W2158147889 @default.
- W2218940540 cites W2158734307 @default.
- W2218940540 cites W2168445562 @default.
- W2218940540 cites W4251530155 @default.
- W2218940540 doi "https://doi.org/10.1111/jth.13220" @default.
- W2218940540 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27992106" @default.
- W2218940540 hasPublicationYear "2016" @default.
- W2218940540 type Work @default.
- W2218940540 sameAs 2218940540 @default.
- W2218940540 citedByCount "29" @default.
- W2218940540 countsByYear W22189405402016 @default.
- W2218940540 countsByYear W22189405402017 @default.
- W2218940540 countsByYear W22189405402018 @default.
- W2218940540 countsByYear W22189405402019 @default.
- W2218940540 countsByYear W22189405402021 @default.
- W2218940540 countsByYear W22189405402022 @default.
- W2218940540 countsByYear W22189405402023 @default.
- W2218940540 crossrefType "journal-article" @default.
- W2218940540 hasAuthorship W2218940540A5018851701 @default.
- W2218940540 hasAuthorship W2218940540A5084823710 @default.
- W2218940540 hasBestOaLocation W22189405401 @default.
- W2218940540 hasConcept C126322002 @default.
- W2218940540 hasConcept C126838900 @default.
- W2218940540 hasConcept C2776098176 @default.
- W2218940540 hasConcept C2780011451 @default.
- W2218940540 hasConcept C2780868729 @default.
- W2218940540 hasConcept C2909041971 @default.
- W2218940540 hasConcept C41008148 @default.
- W2218940540 hasConcept C71924100 @default.
- W2218940540 hasConceptScore W2218940540C126322002 @default.
- W2218940540 hasConceptScore W2218940540C126838900 @default.
- W2218940540 hasConceptScore W2218940540C2776098176 @default.
- W2218940540 hasConceptScore W2218940540C2780011451 @default.
- W2218940540 hasConceptScore W2218940540C2780868729 @default.
- W2218940540 hasConceptScore W2218940540C2909041971 @default.
- W2218940540 hasConceptScore W2218940540C41008148 @default.
- W2218940540 hasConceptScore W2218940540C71924100 @default.
- W2218940540 hasIssue "2" @default.
- W2218940540 hasLocation W22189405401 @default.
- W2218940540 hasLocation W22189405402 @default.
- W2218940540 hasOpenAccess W2218940540 @default.
- W2218940540 hasPrimaryLocation W22189405401 @default.
- W2218940540 hasRelatedWork W1505429867 @default.
- W2218940540 hasRelatedWork W1947780375 @default.
- W2218940540 hasRelatedWork W1964180819 @default.
- W2218940540 hasRelatedWork W2136552389 @default.
- W2218940540 hasRelatedWork W2316863356 @default.
- W2218940540 hasRelatedWork W2460634907 @default.
- W2218940540 hasRelatedWork W2748952813 @default.
- W2218940540 hasRelatedWork W2899084033 @default.