Matches in SemOpenAlex for { <https://semopenalex.org/work/W2219596751> ?p ?o ?g. }
- W2219596751 endingPage "277" @default.
- W2219596751 startingPage "253" @default.
- W2219596751 abstract "Journal of Integrative NeuroscienceVol. 14, No. 02, pp. 253-277 (2015) Research ArticlesNo AccessNonparametric directionality measures for time series and point process dataDavid M. HallidayDavid M. HallidayDepartment of Electronics, University of York, York, YO10 5DD, UK Search for more papers by this author https://doi.org/10.1142/S0219635215300127Cited by:17 Previous AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractThe need to determine the directionality of interactions between neural signals is a key requirement for analysis of multichannel recordings. Approaches most commonly used are parametric, typically relying on autoregressive models. A number of concerns have been expressed regarding parametric approaches, thus there is a need to consider alternatives. We present an alternative nonparametric approach for construction of directionality measures for bivariate random processes. The method combines time and frequency domain representations of bivariate data to decompose the correlation by direction. Our framework generates two sets of complementary measures, a set of scalar measures, which decompose the total product moment correlation coefficient summatively into three terms by direction and a set of functions which decompose the coherence summatively at each frequency into three terms by direction: forward direction, reverse direction and instantaneous interaction. It can be undertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to either time series or point-process (spike train) data or mixtures of the two (hybrid data). In this paper, we demonstrate application to spike train data using simulated cortical neurone networks and application to experimental data from isolated muscle spindle sensory endings subject to random efferent stimulation.Keywords:Directionalitycoherencenonparametrictime seriespoint processnetworksGranger causality References L. A. Baccala and K. Sameshima , Biol. Cybern. 84 , 463 ( 2001 ) . Crossref, Medline, ISI, Google Scholar M. S. Bartlett , Nature 161 , 686 ( 1948 ) . Crossref, ISI, Google Scholar P. Bloomfield , Fourier Analyis of Time Series — An Introduction ( John Wiley & Sons Inc , New York , 2002 ) . Google Scholar H. Bokil et al. , J. Neurosci. Methods 159 , 337 ( 2007 ) . Crossref, Medline, ISI, Google ScholarD. R. Brillinger, The spectral analysis of stationary interval functions, Proc. Sixth Berkeley Symp. Math. Statist. Probab, eds. L. M. LeCam, J. Neyman and E. Scott (1972) pp. 483–513. Google Scholar D. R. Brillinger , Proc. IEEE 62 , 1628 ( 1974 ) . Crossref, ISI, Google Scholar D. R. Brillinger , Time Series — Data Analysis and Theory ( Holt Rinehart & Winston Inc. , New York , 1975 ) . Google Scholar D. R. Brillinger , K. A. Lindsay and J. R. Rosenberg , Biol. Cybern. 100 , 459 ( 2009 ) . Crossref, Medline, ISI, Google Scholar R. Carvalho et al. , Phys. Rev. E 80 , 016106 ( 2009 ) . Crossref, Google Scholar Y. Chen , S. L. Bressler and M. Ding , J. Neurosci. Methods 150 , 228 ( 2006 ) . Crossref, Medline, ISI, Google Scholar D. Chicharro , Biol. Cybern. 105 , 331 ( 2012 ) . Crossref, ISI, Google Scholar I. Crespo et al. , BMC Syst. Biol. 6 , 132 ( 2012 ) . Crossref, Medline, ISI, Google ScholarD. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Elementary Theory and Methods I (Springer, Berlin, 2003) p. 471. Google Scholar A. Destexhe , M. Rudolph and D. Pare , Nat. Rev. Neurosci. 4 , 739 ( 2003 ) . Crossref, Medline, ISI, Google Scholar M. Dhamala , G. Rangarajan and M. Ding , NeuroImage 41 , 354 ( 2008 ) . Crossref, Medline, ISI, Google Scholar M. Dhamala , G. Rangarajan and M. Ding , Phys. Rev. Lett. 100 , 18701 ( 2008 ) . Crossref, ISI, Google Scholar P. Diggle , Time Series: A Biostatistical Introduction ( Clarendon Press , New York , 1990 ) . Google Scholar M. Eichler , R. Dahlhaus and J. Sandkuhler , Biol. Cybern. 89 , 289 ( 2003 ) . Crossref, Medline, ISI, Google Scholar Y. C. Eldar and A. V. Oppenheim , IEEE Trans. Inform. Theory 49 , 1846 ( 2003 ) . Crossref, ISI, Google Scholar W. Gersch , Math. Biosci. 14 , 177 ( 1972 ) . Crossref, Google Scholar J. F. Geweke , J. Am. Stat. Assoc. 77 , 304 ( 1982 ) . Crossref, ISI, Google Scholar J. F. Geweke , J. Am. Stat. Assoc. 79 , 907 ( 1984 ) . Crossref, ISI, Google Scholar M. H. Gladden and H. Matsuzaki , J. Physiol. 54 , 273 ( 2002 ) . Crossref, ISI, Google Scholar C. W. J. Granger , Econometrica 37 , 424 ( 1969 ) . Crossref, ISI, Google ScholarD. M. Halliday, M. H. Gladden and J. R. Rosenberg, Mechanoreceptors Development, Structure and Function, eds. P. Hnket al. (Springer, Berlin, 1987) pp. 225–230. Google Scholar D. M. Halliday et al. , Prog. Biophys. Mol. Biol. 64 , 237 ( 1995 ) . Crossref, Medline, ISI, Google ScholarD. M. Halliday, Modeling in the Neurosciences, 2nd edn., eds. G. N. Reekeet al. (Taylor & Francis, Boca Raton, FL, USA, 2005) pp. 555–579. Google ScholarM. R. Jarvis and P. P. Mitra, Neural Comput. 13(4), 717 (2001). Crossref, Medline, ISI, Google Scholar H. Jeong et al. , Nature 407 , 651 ( 2000 ) . Crossref, Medline, ISI, Google Scholar M. Kaiser , NeuroImage 57 , 892 ( 2011 ) . Crossref, Medline, ISI, Google Scholar M. Kaminski et al. , Biol. Cybern. 85 , 145 ( 2001 ) . Crossref, Medline, ISI, Google Scholar G. Karlebach and R. Shamir , Nat. Rev. Mole. Cell. Biol. 9 , 770 ( 2008 ) . Crossref, Medline, ISI, Google Scholar M. G. Kendall and A. Stuart , The Advanced Theory of Statistics 2 ( Charles Griffin & Company , London , 1961 ) . Google Scholar K. A. Lindsay and J. R. Rosenberg , Biol. Cybern. 104 , 385 ( 2011 ) . Crossref, Medline, ISI, Google ScholarD. A. McCormick, The Synaptic Organisation of the Brain, 4th edn., ed. G. M. Shepherd (Oxford University Press, Oxford, 1998) pp. 37–75. Google Scholar T. Medkour , A. T. Walden and A. Burgess , J. Neurosci. Methods 180 , 374 ( 2009 ) . Crossref, Medline, ISI, Google ScholarM. Newman, Networks: An Introduction (Oxford University Press, UK, 2010) p. 720. Crossref, Google Scholar S. C. Olhede and A. T. Walden , IEEE Trans. Signal Process. 50 , 2661 ( 2002 ) . Crossref, ISI, Google Scholar A. V. Oppenheim and R. W. Schafer , Digital Signal Processing ( Prentice Hall International , UK , 1975 ) . Google Scholar D. B. Percival and A. T. Walden , Spectral Analysis for Physical Applications ( Cambridge University Press , UK , 1993 ) . Crossref, Google Scholar D. A. Pierce , J. Am. Stat. Assoc. 74 , 901 ( 1979 ) . ISI, Google ScholarH. Press and J. W. Tukey, The Collected Works of John W Tukey 1, ed. D. R. Brillinger (Wadsworth, California, 1956) pp. 185–255. Google Scholar M. B. Priestley , Spectral Analysis and Time Series ( Academic Press , London , 1981 ) . Google Scholar Rigas, A. (1983) Point processes and time series analysis: Theory and applications to complex physiological systems. Ph.D. Thesis, University of Glasgow, 330p . Google Scholar J. R. Rosenberg et al. , J. Neurosci. Methods 83 , 57 ( 1998 ) . Crossref, Medline, ISI, Google Scholar J. R. Rosenberg et al. , Prog. Biophys. Mol. Biol. 53 , 1 ( 1989 ) . Crossref, Medline, ISI, Google Scholar M. Rubinov and O. Sporns , NeuroImage 52 , 1059 ( 2010 ) . Crossref, Medline, ISI, Google Scholar R. Salvador et al. , Philos. Trans. R. Soc. London B, Biol. Sci. 360 , 937 ( 2005 ) . Crossref, Medline, ISI, Google Scholar B. Schelter et al. , J. Neurosci. Methods 152 , 210 ( 2006 ) . Crossref, Medline, ISI, Google Scholar D. J. Thomson , Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 330 , 601 ( 1990 ) . Crossref, ISI, Google ScholarD. J. Thomson and A. Chave, Advances in Spectrum Analysis and Array Processing 1, ed. S. Haykin (Prentice Hall, Englewood Cliffs, New Jersey, 1991) pp. 58–113. Google Scholar T. W. Troyer and K. D. Miller , Neural Comput. 9 , 971 ( 1997 ) . Crossref, Medline, ISI, Google Scholar J. Whittaker , Graphical Models in Applied Multivariate Statistics ( Wiley , New York , 1990 ) . Google Scholar G. T. Wilson , SIAM J. Appl. Math. 23 , 420 ( 1972 ) . Crossref, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 17Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neuronsJaime Ibáñez, Blanka Zicher, Katlyn E. Brown, Lorenzo Rocchi and Andrea Casolo et al.13 July 2022 | The Journal of Physiology, Vol. 10Corticomuscular coherence is reduced in relation to dorsiflexion fatigability to the same extent in adults with cerebral palsy as in neurologically intact adultsChristian Riis Forman, Kim Jennifer Jacobsen, Anke Ninija Karabanov, Jens Bo Nielsen and Jakob Lorentzen2 April 2022 | European Journal of Applied Physiology, Vol. 122, No. 6Stimulating at the right time to recover network states in a model of the cortico-basal ganglia-thalamic circuitTimothy O. West, Peter J. Magill, Andrew Sharott, Vladimir Litvak and Simon F. Farmer et al.4 March 2022 | PLOS Computational Biology, Vol. 18, No. 3Neural coupling between upper and lower limb muscles in Parkinsonian gaitJoyce B. Weersink, Bauke M. de Jong and Natasha M. Maurits1 Feb 2022 | Clinical Neurophysiology, Vol. 134Time-dependent directional intermuscular coherence analysis reveals that forward and backward arm swing equally drive the upper leg muscles during gait initiationJoyce B. Weersink, Natasha M. Maurits, David M. Halliday and Bauke M. de Jong1 Feb 2022 | Gait & Posture, Vol. 92Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthoodMikkel Malling Beck, Meaghan Elizabeth Spedden and Jesper Lundbye-Jensen24 November 2021 | Scientific Reports, Vol. 11, No. 1Inference of brain networks with approximate Bayesian computation – assessing face validity with an example application in ParkinsonismTimothy O. West, Luc Berthouze, Simon F. Farmer, Hayriye Cagnan and Vladimir Litvak1 Aug 2021 | NeuroImage, Vol. 236Only the Fastest Corticospinal Fibers Contribute to β Corticomuscular CoherenceJ. Ibáñez, A. Del Vecchio, J. C. Rothwell, S. N. Baker and D. Farina23 April 2021 | The Journal of Neuroscience, Vol. 41, No. 22Intermuscular coherence analysis in older adults reveals that gait‐related arm swing drives lower limb muscles via subcortical and cortical pathwaysJoyce B. Weersink, Bauke M. Jong, David M. Halliday and Natasha M. Maurits19 March 2021 | The Journal of Physiology, Vol. 599, No. 8Defective corticomuscular connectivity during walking in patients with Parkinson’s diseaseHikaru Yokoyama, Takashi Yoshida, Karl Zabjek, Robert Chen and Kei Masani1 Nov 2020 | Journal of Neurophysiology, Vol. 124, No. 5Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger CausalityTimothy O. West, David M. Halliday, Steven L. Bressler, Simon F. Farmer and Vladimir Litvak1 Sep 2020 | NeuroImage, Vol. 218Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During GaitPeter Jensen, Rasmus Frisk, Meaghan Elizabeth Spedden, Svend Sparre Geertsen and Laurent J. Bouyer et al.18 January 2019 | Journal of Motor Behavior, Vol. 51, No. 6The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescenceMeaghan Elizabeth Spedden, Peter Jensen, Cecilie Ulbæk Terkildsen, Nicole Jacqueline Jensen and David M. Halliday et al.1 May 2019 | NeuroImage, Vol. 191Synchronization in the prefrontal–striatal circuit tracks behavioural choice in a go–no‐go task in ratsChristine Stubbendorff, Manuel Molano‐Mazon, Andrew M.J. Young and Todor V. Gerdjikov2 April 2018 | European Journal of Neuroscience, Vol. 49, No. 5Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian ratTimothy O. West, Luc Berthouze, David M. Halliday, Vladimir Litvak and Andrew Sharott et al.1 May 2018 | Journal of Neurophysiology, Vol. 119, No. 5Altered cortico-striatal crosstalk underlies object recognition memory deficits in the sub-chronic phencyclidine model of schizophreniaAman Asif-Malik, Daniel Dautan, Andrew M. J. Young and Todor V. Gerdjikov14 March 2017 | Brain Structure and Function, Vol. 222, No. 7Non-parametric directionality analysis – Extension for removal of a single common predictor and application to time seriesDavid M. Halliday, Mohd Harizal Senik, Carl W. Stevenson and Rob Mason1 Aug 2016 | Journal of Neuroscience Methods, Vol. 268 Recommended Vol. 14, No. 02 Metrics History Received 9 October 2014 Accepted 25 February 2015 Published: 11 May 2015 KeywordsDirectionalitycoherencenonparametrictime seriespoint processnetworksGranger causalityPDF download" @default.
- W2219596751 created "2016-06-24" @default.
- W2219596751 creator A5026981278 @default.
- W2219596751 date "2015-06-01" @default.
- W2219596751 modified "2023-10-18" @default.
- W2219596751 title "Nonparametric directionality measures for time series and point process data" @default.
- W2219596751 cites W1964769652 @default.
- W2219596751 cites W1969187272 @default.
- W2219596751 cites W1971168247 @default.
- W2219596751 cites W1985932255 @default.
- W2219596751 cites W1994955520 @default.
- W2219596751 cites W2000132404 @default.
- W2219596751 cites W2002698873 @default.
- W2219596751 cites W2003209004 @default.
- W2219596751 cites W2003495311 @default.
- W2219596751 cites W2016819406 @default.
- W2219596751 cites W2025687881 @default.
- W2219596751 cites W2031188761 @default.
- W2219596751 cites W2051497843 @default.
- W2219596751 cites W2062029454 @default.
- W2219596751 cites W2080271204 @default.
- W2219596751 cites W2080515327 @default.
- W2219596751 cites W2087883956 @default.
- W2219596751 cites W2094542824 @default.
- W2219596751 cites W2107300011 @default.
- W2219596751 cites W2109690662 @default.
- W2219596751 cites W2112709449 @default.
- W2219596751 cites W2113114335 @default.
- W2219596751 cites W2123346926 @default.
- W2219596751 cites W2132739442 @default.
- W2219596751 cites W2136562407 @default.
- W2219596751 cites W2146506906 @default.
- W2219596751 cites W2154034179 @default.
- W2219596751 cites W2154585723 @default.
- W2219596751 cites W2155525875 @default.
- W2219596751 cites W2163133600 @default.
- W2219596751 cites W2165416206 @default.
- W2219596751 cites W2167822639 @default.
- W2219596751 cites W2178225550 @default.
- W2219596751 cites W2263224228 @default.
- W2219596751 cites W2277391839 @default.
- W2219596751 cites W3103786587 @default.
- W2219596751 cites W4231726431 @default.
- W2219596751 cites W4238051305 @default.
- W2219596751 cites W4238452917 @default.
- W2219596751 doi "https://doi.org/10.1142/s0219635215300127" @default.
- W2219596751 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25958923" @default.
- W2219596751 hasPublicationYear "2015" @default.
- W2219596751 type Work @default.
- W2219596751 sameAs 2219596751 @default.
- W2219596751 citedByCount "23" @default.
- W2219596751 countsByYear W22195967512016 @default.
- W2219596751 countsByYear W22195967512017 @default.
- W2219596751 countsByYear W22195967512018 @default.
- W2219596751 countsByYear W22195967512019 @default.
- W2219596751 countsByYear W22195967512020 @default.
- W2219596751 countsByYear W22195967512021 @default.
- W2219596751 countsByYear W22195967512022 @default.
- W2219596751 crossrefType "journal-article" @default.
- W2219596751 hasAuthorship W2219596751A5026981278 @default.
- W2219596751 hasBestOaLocation W22195967512 @default.
- W2219596751 hasConcept C102366305 @default.
- W2219596751 hasConcept C105795698 @default.
- W2219596751 hasConcept C111919701 @default.
- W2219596751 hasConcept C119857082 @default.
- W2219596751 hasConcept C143724316 @default.
- W2219596751 hasConcept C151406439 @default.
- W2219596751 hasConcept C151730666 @default.
- W2219596751 hasConcept C2524010 @default.
- W2219596751 hasConcept C28719098 @default.
- W2219596751 hasConcept C29648211 @default.
- W2219596751 hasConcept C33923547 @default.
- W2219596751 hasConcept C41008148 @default.
- W2219596751 hasConcept C54355233 @default.
- W2219596751 hasConcept C86803240 @default.
- W2219596751 hasConcept C88871306 @default.
- W2219596751 hasConcept C98045186 @default.
- W2219596751 hasConceptScore W2219596751C102366305 @default.
- W2219596751 hasConceptScore W2219596751C105795698 @default.
- W2219596751 hasConceptScore W2219596751C111919701 @default.
- W2219596751 hasConceptScore W2219596751C119857082 @default.
- W2219596751 hasConceptScore W2219596751C143724316 @default.
- W2219596751 hasConceptScore W2219596751C151406439 @default.
- W2219596751 hasConceptScore W2219596751C151730666 @default.
- W2219596751 hasConceptScore W2219596751C2524010 @default.
- W2219596751 hasConceptScore W2219596751C28719098 @default.
- W2219596751 hasConceptScore W2219596751C29648211 @default.
- W2219596751 hasConceptScore W2219596751C33923547 @default.
- W2219596751 hasConceptScore W2219596751C41008148 @default.
- W2219596751 hasConceptScore W2219596751C54355233 @default.
- W2219596751 hasConceptScore W2219596751C86803240 @default.
- W2219596751 hasConceptScore W2219596751C88871306 @default.
- W2219596751 hasConceptScore W2219596751C98045186 @default.
- W2219596751 hasIssue "02" @default.
- W2219596751 hasLocation W22195967511 @default.
- W2219596751 hasLocation W22195967512 @default.
- W2219596751 hasLocation W22195967513 @default.
- W2219596751 hasOpenAccess W2219596751 @default.