Matches in SemOpenAlex for { <https://semopenalex.org/work/W2220403730> ?p ?o ?g. }
- W2220403730 endingPage "e0137268" @default.
- W2220403730 startingPage "e0137268" @default.
- W2220403730 abstract "Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500." @default.
- W2220403730 created "2016-06-24" @default.
- W2220403730 creator A5005142108 @default.
- W2220403730 creator A5024726175 @default.
- W2220403730 creator A5025850735 @default.
- W2220403730 creator A5053008837 @default.
- W2220403730 creator A5056871757 @default.
- W2220403730 creator A5064579733 @default.
- W2220403730 creator A5079871736 @default.
- W2220403730 creator A5085830424 @default.
- W2220403730 date "2015-09-14" @default.
- W2220403730 modified "2023-10-02" @default.
- W2220403730 title "Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp." @default.
- W2220403730 cites W1775749144 @default.
- W2220403730 cites W1946263363 @default.
- W2220403730 cites W1959956404 @default.
- W2220403730 cites W1976924503 @default.
- W2220403730 cites W1978957493 @default.
- W2220403730 cites W1985064926 @default.
- W2220403730 cites W1986558458 @default.
- W2220403730 cites W2007098761 @default.
- W2220403730 cites W2020600809 @default.
- W2220403730 cites W2028389683 @default.
- W2220403730 cites W2030051563 @default.
- W2220403730 cites W2031251040 @default.
- W2220403730 cites W2033509028 @default.
- W2220403730 cites W2034259021 @default.
- W2220403730 cites W2034356060 @default.
- W2220403730 cites W2044432428 @default.
- W2220403730 cites W2050104837 @default.
- W2220403730 cites W2062349206 @default.
- W2220403730 cites W2065418986 @default.
- W2220403730 cites W2070123385 @default.
- W2220403730 cites W2072714551 @default.
- W2220403730 cites W2082355601 @default.
- W2220403730 cites W2086436706 @default.
- W2220403730 cites W2105443690 @default.
- W2220403730 cites W2122782494 @default.
- W2220403730 cites W2125680068 @default.
- W2220403730 cites W2142266860 @default.
- W2220403730 cites W2154000365 @default.
- W2220403730 cites W2333799047 @default.
- W2220403730 doi "https://doi.org/10.1371/journal.pone.0137268" @default.
- W2220403730 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4569268" @default.
- W2220403730 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26368924" @default.
- W2220403730 hasPublicationYear "2015" @default.
- W2220403730 type Work @default.
- W2220403730 sameAs 2220403730 @default.
- W2220403730 citedByCount "20" @default.
- W2220403730 countsByYear W22204037302016 @default.
- W2220403730 countsByYear W22204037302017 @default.
- W2220403730 countsByYear W22204037302018 @default.
- W2220403730 countsByYear W22204037302019 @default.
- W2220403730 countsByYear W22204037302020 @default.
- W2220403730 countsByYear W22204037302021 @default.
- W2220403730 countsByYear W22204037302023 @default.
- W2220403730 crossrefType "journal-article" @default.
- W2220403730 hasAuthorship W2220403730A5005142108 @default.
- W2220403730 hasAuthorship W2220403730A5024726175 @default.
- W2220403730 hasAuthorship W2220403730A5025850735 @default.
- W2220403730 hasAuthorship W2220403730A5053008837 @default.
- W2220403730 hasAuthorship W2220403730A5056871757 @default.
- W2220403730 hasAuthorship W2220403730A5064579733 @default.
- W2220403730 hasAuthorship W2220403730A5079871736 @default.
- W2220403730 hasAuthorship W2220403730A5085830424 @default.
- W2220403730 hasBestOaLocation W22204037301 @default.
- W2220403730 hasConcept C150077022 @default.
- W2220403730 hasConcept C150903083 @default.
- W2220403730 hasConcept C185592680 @default.
- W2220403730 hasConcept C2778163477 @default.
- W2220403730 hasConcept C2779387492 @default.
- W2220403730 hasConcept C31903555 @default.
- W2220403730 hasConcept C43617362 @default.
- W2220403730 hasConcept C55493867 @default.
- W2220403730 hasConcept C86803240 @default.
- W2220403730 hasConcept C92397422 @default.
- W2220403730 hasConceptScore W2220403730C150077022 @default.
- W2220403730 hasConceptScore W2220403730C150903083 @default.
- W2220403730 hasConceptScore W2220403730C185592680 @default.
- W2220403730 hasConceptScore W2220403730C2778163477 @default.
- W2220403730 hasConceptScore W2220403730C2779387492 @default.
- W2220403730 hasConceptScore W2220403730C31903555 @default.
- W2220403730 hasConceptScore W2220403730C43617362 @default.
- W2220403730 hasConceptScore W2220403730C55493867 @default.
- W2220403730 hasConceptScore W2220403730C86803240 @default.
- W2220403730 hasConceptScore W2220403730C92397422 @default.
- W2220403730 hasIssue "9" @default.
- W2220403730 hasLocation W22204037301 @default.
- W2220403730 hasLocation W22204037302 @default.
- W2220403730 hasLocation W22204037303 @default.
- W2220403730 hasLocation W22204037304 @default.
- W2220403730 hasLocation W22204037305 @default.
- W2220403730 hasLocation W22204037306 @default.
- W2220403730 hasOpenAccess W2220403730 @default.
- W2220403730 hasPrimaryLocation W22204037301 @default.
- W2220403730 hasRelatedWork W1483334878 @default.
- W2220403730 hasRelatedWork W1485615592 @default.
- W2220403730 hasRelatedWork W1537948253 @default.