Matches in SemOpenAlex for { <https://semopenalex.org/work/W2220610374> ?p ?o ?g. }
- W2220610374 endingPage "172" @default.
- W2220610374 startingPage "158" @default.
- W2220610374 abstract "Application of pharmacological agents within the visual system has been used both to treat ocular disease and to investigate normal mechanisms of visual function and neural development. This chapter will describe experiments that use GABAergic and glutamatergic drug application to understand the underlying mechanisms through which the visual system influences oculomotor behaviors. This discussion will describe some results using intracranial drug injection but will mainly focus on drug effects following intravitreal injections. Because there are several oculomotor behaviors and several parallel pathways by which visual information streams from the retina through the brain, let us generalize somewhat. The visual cortex is involved in perception of color and form, although the cortex also computes the position and direction of visual stimuli. Stimulus position is required by the superior colliculus for the control of saccades, and stimulus direction and speed are used by brainstem structures (the accessory optic system and pretectum) to stabilize retinal images (minimize retinal slip). A constant retinal slip results in ocular nystagmus, with the fast phase eye movements recentering the gaze to allow for more slow phase movement. Thus, the eye movements of animals trained to detect a target may be modified by drugs that affect retino-geniculo-cortical visual pathways. Saccades to certain positions in visual space may be influenced by chemical agents that alter the output of the superior colliculus. Finally, nystagmus may result from drugs that upset the processing of the retinal slip velocity of the global visual image. Irrespective of the oculomotor behavior, these experiments use a common rationale: mimic a visual neuron’s neurotransmitter release or block its transmitter’s effect on postsynaptic cells. The protocols for these experiments are also similar. First, a pharmacological agent is chosen that has a known effect on a specific cell surface synaptic receptor of a specific neuron type that is near the site of drug application. Second, a dose is selected such that the cell’s response will be modulated without nonspecific effects on adjacent nerve cells or axons. Third, prior to drug application, normal oculomotor behavior is characterized by measuring eye movements that occur spontaneously, reflexively, or in response to training. Fourth, following these control measurements, the drug is administered and eye movements are again measured to detect drug-related changes. Fifth, oculomotor behavior is monitored to determine the time course of recovery from the drug’s effect. As with the analysis of any behavioral effect of a pharmacological manipulation, many difficulties arise in interpreting these results. First, the effects of the drug must be distinguished from any effects of drug administration (e.g., transient effects of the anesthesia, ocular irritation caused by puncture of the globe by a hypodermic needle, changes in the intraocular pressure, changes in the ocular optics). Second, the dose should be minimized to be selective for the intended synaptic receptors without affecting neurons elsewhere via drug diffusion away from the injection site. Third, for intraocular drug injections, it should be confirmed that the change in retinal output stems from changes at retinal synapses and not from changes in accommodation, pupilloconstriction, or the motility of the extraocular muscles. Fourth, the interpretation should consider all possible pathways through which a change in synaptic transmission could be relayed by the parallel pathways in the visual system in order to affect the oculomotor response. Such an analysis is often confounded by the closed-loop nature of visually driven oculomotor responses. Changes in visual processing that lead to changes in oculomotor responses will ultimately cause changes in the visual stimulus position as the retinal image is shifted by an eye movement. There is also the possibility of direct oculomotor feedback onto ganglion cells via centrifugal inputs to the retina (Marchiafava, 1976; Martin et al., 1990). Of all these considerations, perhaps the greatest concern is the specificity of the pharmacological agents. It is for this reason that the analysis of the effects of intravitreal drug injections on eye movements is often complemented by electrophysiology of appropriate neural structures. These electrophysiological and behavioral results, as well as related anatomical and pharmacological evidence, can then be used to postulate the underlying mechanisms of visual system input to oculomotor control." @default.
- W2220610374 created "2016-06-24" @default.
- W2220610374 creator A5071774929 @default.
- W2220610374 date "1992-01-01" @default.
- W2220610374 modified "2023-10-16" @default.
- W2220610374 title "Neurotransmitter Drugs that Affect Vertebrate Eye Movements" @default.
- W2220610374 cites W1544760391 @default.
- W2220610374 cites W1596961135 @default.
- W2220610374 cites W1748759529 @default.
- W2220610374 cites W1890315254 @default.
- W2220610374 cites W1908448863 @default.
- W2220610374 cites W1970403664 @default.
- W2220610374 cites W1977581007 @default.
- W2220610374 cites W1985671917 @default.
- W2220610374 cites W2001054705 @default.
- W2220610374 cites W2003858779 @default.
- W2220610374 cites W2019730413 @default.
- W2220610374 cites W2023367962 @default.
- W2220610374 cites W2031906945 @default.
- W2220610374 cites W2035874592 @default.
- W2220610374 cites W2040116969 @default.
- W2220610374 cites W2072060769 @default.
- W2220610374 cites W2078509321 @default.
- W2220610374 cites W2100990429 @default.
- W2220610374 cites W2119735087 @default.
- W2220610374 cites W2133003488 @default.
- W2220610374 cites W2133057051 @default.
- W2220610374 cites W2134682002 @default.
- W2220610374 cites W2137965523 @default.
- W2220610374 cites W2154480864 @default.
- W2220610374 cites W2162642543 @default.
- W2220610374 cites W2235420432 @default.
- W2220610374 cites W2270750275 @default.
- W2220610374 cites W2340321509 @default.
- W2220610374 cites W2406388519 @default.
- W2220610374 cites W2408080825 @default.
- W2220610374 cites W2413364815 @default.
- W2220610374 cites W2413626083 @default.
- W2220610374 cites W2437061307 @default.
- W2220610374 cites W2462700382 @default.
- W2220610374 cites W61801672 @default.
- W2220610374 cites W62259587 @default.
- W2220610374 doi "https://doi.org/10.1007/978-1-4899-6726-8_12" @default.
- W2220610374 hasPublicationYear "1992" @default.
- W2220610374 type Work @default.
- W2220610374 sameAs 2220610374 @default.
- W2220610374 citedByCount "2" @default.
- W2220610374 crossrefType "book-chapter" @default.
- W2220610374 hasAuthorship W2220610374A5071774929 @default.
- W2220610374 hasConcept C118487528 @default.
- W2220610374 hasConcept C153050134 @default.
- W2220610374 hasConcept C15744967 @default.
- W2220610374 hasConcept C169760540 @default.
- W2220610374 hasConcept C180747234 @default.
- W2220610374 hasConcept C192351223 @default.
- W2220610374 hasConcept C2777093970 @default.
- W2220610374 hasConcept C2779345533 @default.
- W2220610374 hasConcept C2779736392 @default.
- W2220610374 hasConcept C2779918689 @default.
- W2220610374 hasConcept C2780827179 @default.
- W2220610374 hasConcept C2781416072 @default.
- W2220610374 hasConcept C529278444 @default.
- W2220610374 hasConcept C548259974 @default.
- W2220610374 hasConcept C551621295 @default.
- W2220610374 hasConcept C552161191 @default.
- W2220610374 hasConcept C71924100 @default.
- W2220610374 hasConceptScore W2220610374C118487528 @default.
- W2220610374 hasConceptScore W2220610374C153050134 @default.
- W2220610374 hasConceptScore W2220610374C15744967 @default.
- W2220610374 hasConceptScore W2220610374C169760540 @default.
- W2220610374 hasConceptScore W2220610374C180747234 @default.
- W2220610374 hasConceptScore W2220610374C192351223 @default.
- W2220610374 hasConceptScore W2220610374C2777093970 @default.
- W2220610374 hasConceptScore W2220610374C2779345533 @default.
- W2220610374 hasConceptScore W2220610374C2779736392 @default.
- W2220610374 hasConceptScore W2220610374C2779918689 @default.
- W2220610374 hasConceptScore W2220610374C2780827179 @default.
- W2220610374 hasConceptScore W2220610374C2781416072 @default.
- W2220610374 hasConceptScore W2220610374C529278444 @default.
- W2220610374 hasConceptScore W2220610374C548259974 @default.
- W2220610374 hasConceptScore W2220610374C551621295 @default.
- W2220610374 hasConceptScore W2220610374C552161191 @default.
- W2220610374 hasConceptScore W2220610374C71924100 @default.
- W2220610374 hasLocation W22206103741 @default.
- W2220610374 hasOpenAccess W2220610374 @default.
- W2220610374 hasPrimaryLocation W22206103741 @default.
- W2220610374 hasRelatedWork W1965872687 @default.
- W2220610374 hasRelatedWork W1988275121 @default.
- W2220610374 hasRelatedWork W2005717228 @default.
- W2220610374 hasRelatedWork W2301148815 @default.
- W2220610374 hasRelatedWork W2755748253 @default.
- W2220610374 hasRelatedWork W2899973283 @default.
- W2220610374 hasRelatedWork W3028468154 @default.
- W2220610374 hasRelatedWork W393933662 @default.
- W2220610374 hasRelatedWork W4232603879 @default.
- W2220610374 hasRelatedWork W43470580 @default.
- W2220610374 isParatext "false" @default.
- W2220610374 isRetracted "false" @default.