Matches in SemOpenAlex for { <https://semopenalex.org/work/W2220969213> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2220969213 abstract ",/ Numerous systems have been developed over the past 25 years for remote classification of sediments. The generation of acoustic impedance as a function of depth is the principle behind operation of most normal-incidence acoustic classification systems. A typical high-resolution seismic system (15 kHz) used to classify sediments is described by Lambert et al. [1]. Profiles of sediment impedance are determined from echo return amplitude and pulse character using acoustic multilayer theory. Physical and/or empirical models are then used to convert these in-situ estimates of sediment impedance to sediment type or values of sediment physical (porosity, grain size, bulk density, permeability), geoacoustic (compressional and shear wave velocity or attenuation, acoustic reflectivity) or engineering (shear strength) properties. In this paper we assume a priori that a )ustic sediment classification techniques give accurate estimates of in-situ sediment impedance. We will instead examine the empirical and physical models that are used to estimate sediment type or values of sediment properties from the in-situ sediment impedance. Perhaps the most widely used empirical relationships between sediment acoustic and physical properties were developed by Edwin Hamilton in the 1960's and 1970's [2]. Bachman [31 summarized Hamilton's relationships with an emphasis on the prediction of sediment physical properties from sediment acoustic impedance. This approach is the inverse of Hamiltion's, where sediment physical properties are used to predict sediment geoacoustic properties [4]. Several factors complicate the apparent straightforward prediction of values of sediment properties from remotely sensed sediment impedance. Firstly, impedance is the product of sediment sound speed and sediment bulk density, two quantities that are dependent on temperature, porewater salinity and water depth. Because empirical relationships are based on measurements made at (or corrected to) common environmental conditions, it is imperative that estimates of sediment properties be corrected for differences in model and in-situ conditions. Secondly, sediment sound speed also varies with frequency. These empirical relationships are usually constructed from high-frequency 100-400 kHz) acoustic measurements which can differ from the lower frequencies (3.5-30 kHz) at which most remote acoustic measurement systems operate. Depending on the sediment type, determination of frequency dispersion of sediment sound speed may be critical. Thirdly, both sediment physical and acoustic measurements are based on laboratory measurements. Sediment samples from cores are often disturbed during collection, handling and analysis, resulting in field measurements that differ from insitu measurements. Fourthly, some empirical relationships are generated from data not restricted to surficial sediments. Impedance vs. grain size relationships developed from long core samples differ from empirical predictions based on surficial sediment samples. Finally, variability of sediment properties occurs on various spatial scales and affects interpretion of Leoustic classification data." @default.
- W2220969213 created "2016-06-24" @default.
- W2220969213 creator A5034783439 @default.
- W2220969213 creator A5043256213 @default.
- W2220969213 date "1993-01-01" @default.
- W2220969213 modified "2023-09-23" @default.
- W2220969213 title "ON THE USE OF ACOUSTIC IMPEDANCE VALUES TO DETERMINE SEDIMENT PROPERTIES" @default.
- W2220969213 cites W1813720577 @default.
- W2220969213 cites W2020805944 @default.
- W2220969213 cites W2028177713 @default.
- W2220969213 cites W2035707097 @default.
- W2220969213 cites W2053606088 @default.
- W2220969213 cites W2132223796 @default.
- W2220969213 cites W2118489536 @default.
- W2220969213 cites W48652323 @default.
- W2220969213 hasPublicationYear "1993" @default.
- W2220969213 type Work @default.
- W2220969213 sameAs 2220969213 @default.
- W2220969213 citedByCount "18" @default.
- W2220969213 countsByYear W22209692132014 @default.
- W2220969213 countsByYear W22209692132015 @default.
- W2220969213 crossrefType "journal-article" @default.
- W2220969213 hasAuthorship W2220969213A5034783439 @default.
- W2220969213 hasAuthorship W2220969213A5043256213 @default.
- W2220969213 hasConcept C114793014 @default.
- W2220969213 hasConcept C119599485 @default.
- W2220969213 hasConcept C120665830 @default.
- W2220969213 hasConcept C121332964 @default.
- W2220969213 hasConcept C127313418 @default.
- W2220969213 hasConcept C127413603 @default.
- W2220969213 hasConcept C159390177 @default.
- W2220969213 hasConcept C17829176 @default.
- W2220969213 hasConcept C184652730 @default.
- W2220969213 hasConcept C187320778 @default.
- W2220969213 hasConcept C199289684 @default.
- W2220969213 hasConcept C24890656 @default.
- W2220969213 hasConcept C2816523 @default.
- W2220969213 hasConcept C5900021 @default.
- W2220969213 hasConcept C96035792 @default.
- W2220969213 hasConceptScore W2220969213C114793014 @default.
- W2220969213 hasConceptScore W2220969213C119599485 @default.
- W2220969213 hasConceptScore W2220969213C120665830 @default.
- W2220969213 hasConceptScore W2220969213C121332964 @default.
- W2220969213 hasConceptScore W2220969213C127313418 @default.
- W2220969213 hasConceptScore W2220969213C127413603 @default.
- W2220969213 hasConceptScore W2220969213C159390177 @default.
- W2220969213 hasConceptScore W2220969213C17829176 @default.
- W2220969213 hasConceptScore W2220969213C184652730 @default.
- W2220969213 hasConceptScore W2220969213C187320778 @default.
- W2220969213 hasConceptScore W2220969213C199289684 @default.
- W2220969213 hasConceptScore W2220969213C24890656 @default.
- W2220969213 hasConceptScore W2220969213C2816523 @default.
- W2220969213 hasConceptScore W2220969213C5900021 @default.
- W2220969213 hasConceptScore W2220969213C96035792 @default.
- W2220969213 hasLocation W22209692131 @default.
- W2220969213 hasOpenAccess W2220969213 @default.
- W2220969213 hasPrimaryLocation W22209692131 @default.
- W2220969213 hasRelatedWork W1636443849 @default.
- W2220969213 hasRelatedWork W1651990322 @default.
- W2220969213 hasRelatedWork W1996758379 @default.
- W2220969213 hasRelatedWork W2000474073 @default.
- W2220969213 hasRelatedWork W2003857847 @default.
- W2220969213 hasRelatedWork W2013978092 @default.
- W2220969213 hasRelatedWork W2028177713 @default.
- W2220969213 hasRelatedWork W2038217557 @default.
- W2220969213 hasRelatedWork W2040990829 @default.
- W2220969213 hasRelatedWork W2053606088 @default.
- W2220969213 hasRelatedWork W2065100138 @default.
- W2220969213 hasRelatedWork W2078224914 @default.
- W2220969213 hasRelatedWork W2097786130 @default.
- W2220969213 hasRelatedWork W2097794260 @default.
- W2220969213 hasRelatedWork W2132223796 @default.
- W2220969213 hasRelatedWork W2158473907 @default.
- W2220969213 hasRelatedWork W2166212328 @default.
- W2220969213 hasRelatedWork W2345394035 @default.
- W2220969213 hasRelatedWork W243394835 @default.
- W2220969213 hasRelatedWork W3021019131 @default.
- W2220969213 isParatext "false" @default.
- W2220969213 isRetracted "false" @default.
- W2220969213 magId "2220969213" @default.
- W2220969213 workType "article" @default.