Matches in SemOpenAlex for { <https://semopenalex.org/work/W2222734662> ?p ?o ?g. }
- W2222734662 abstract "Optical fiber communication systems have become the backbone of today’s communication networks due to their enormous bandwidth, over several terahertz (THz), enabling capacities of 100 Tb/s and beyond. Almost all of world’s long-haul internet traffic is carried by these optical backbone networks. Despite the fact that the internet bubble ended in the early 2000s, its traffic has been constantly increasing at an astounding rate of 75% per year. In addition to that, new emerging video-centric applications such as IPTV will continue to increase the demand on the underlying optical backbone networks. As a result, ten to twenty years from now, optical networks will have to carry vastly increased amounts of data. However, recent research shows that fundamental limits in optical backbone networks are being approached. These limits are imposed by noise generated from inline amplifiers used to boost up the signal and the intrinsic nonlinearity of conventional standard single mode fiber (S-SMF). In order to meet long-term needs and challenges, therefore, research in wideband optical subsystems enabling high capacity long-haul transmission must be urgently pursued. One approach to break through the current capacity limit is a combination of using advanced modulation formats like coherent optical Orthogonal Frequency Division Multiplexing (CO-OFDM) and fiber nonlinearity mitigation techniques. In OFDM, the orthogonal property of the sub-carriers allows formation of an almost rectangular spectrum, which increases spectral efficiency. However, at the high powers required for higher order modulation formats, the nonlinearity in the fiber causes nonlinear mixing between the subcarriers, restricting the maximum allowable power below nonlinear threshold, and hence constraining the total capacity and distance. The PhD thesis proposed using mid-span spectral inversion (MSSI) that uses optical phase conjugation (OPC) module to mitigate the fiber nonlinearity in CO-OFDM systems. Using MSSI, the spectrum of the first-half of the link (from the Tx to the OPC module) will be inverted by Four-Wave Mixing (FWM) of the OFDM signal with a pump wave. The spectrally inverted signal is then selected to pass through the second half of the link. Because the signal is spectrally inverted, the second half of the link should undo the dispersion and nonlinearity of the first half of the link. During the project, a detailed analytical formalism to describe the performance of the OPC module has been developed. This aids the design and improvement of fundamental performance of OPC module. The first experimental demonstration of using MSSI in a coherent system has been made using dual polarization CO-OFDM systems carrying 1.21-Tb/s over 800 km. A design outline for optimum performance using MSSI has been developed. Two novel methods for improving the fundamental performance of MSSI have been proposed. The first method splits the nonlinear element into two parts, inserting a notch filter to remove the pump and then reinserting the pump into the second part of the nonlinear element. The second method uses a phase shift filter between the two nonlinear elements, to improve robustness in practical implementation. Both methods offer 1 dB of maximum signal quality improvement in a 10 × 80-km 4-QAM 224-Gb/s CO-OFDM system. In summary, this work has demonstrated by simulation and experiments that MSSI offers benefits to coherent optical systems, including OFDM systems. It has developed analytical formalisms that identify the performance-limiting mechanisms in optical phase conjugators based on third order nonlinearity, and has introduced two methods of mitigating these mechanisms. MSSI fell from favour in the mid-2000s due to its complexity. However, after this successful demonstration of fiber nonlinearity compensation using MSSI in a coherent system, MSSI has now drawn considerable attention recently. Subsequently, there have been demonstrations of Raman-enhanced MSSI and multiple phase-conjugations based coherent systems at the 2014 conference on Optical Fiber Communications (OFC)." @default.
- W2222734662 created "2016-06-24" @default.
- W2222734662 creator A5060461088 @default.
- W2222734662 date "2015-01-01" @default.
- W2222734662 modified "2023-09-27" @default.
- W2222734662 title "Fiber nonlinearity mitigation using mid-span spectral inversion in long-haul coherent optical OFDM systems" @default.
- W2222734662 cites W1525556442 @default.
- W2222734662 cites W1544520312 @default.
- W2222734662 cites W1551552713 @default.
- W2222734662 cites W1585641754 @default.
- W2222734662 cites W1624212643 @default.
- W2222734662 cites W1639951707 @default.
- W2222734662 cites W1969928312 @default.
- W2222734662 cites W1970105326 @default.
- W2222734662 cites W1970509615 @default.
- W2222734662 cites W1971918847 @default.
- W2222734662 cites W1974332848 @default.
- W2222734662 cites W1974764527 @default.
- W2222734662 cites W1981904594 @default.
- W2222734662 cites W1983784958 @default.
- W2222734662 cites W1985050204 @default.
- W2222734662 cites W1985850777 @default.
- W2222734662 cites W1988682270 @default.
- W2222734662 cites W1989775454 @default.
- W2222734662 cites W1990055634 @default.
- W2222734662 cites W1994655361 @default.
- W2222734662 cites W2004661791 @default.
- W2222734662 cites W2005039145 @default.
- W2222734662 cites W2007526951 @default.
- W2222734662 cites W2021684590 @default.
- W2222734662 cites W2026725328 @default.
- W2222734662 cites W2031636403 @default.
- W2222734662 cites W2033597422 @default.
- W2222734662 cites W2036122643 @default.
- W2222734662 cites W2038944397 @default.
- W2222734662 cites W2046354540 @default.
- W2222734662 cites W2048976917 @default.
- W2222734662 cites W2049602584 @default.
- W2222734662 cites W2049815974 @default.
- W2222734662 cites W2054269550 @default.
- W2222734662 cites W2056979170 @default.
- W2222734662 cites W2060961982 @default.
- W2222734662 cites W2063311929 @default.
- W2222734662 cites W2069542892 @default.
- W2222734662 cites W2076029367 @default.
- W2222734662 cites W2079832816 @default.
- W2222734662 cites W2081413208 @default.
- W2222734662 cites W2081830716 @default.
- W2222734662 cites W2082897712 @default.
- W2222734662 cites W2089393140 @default.
- W2222734662 cites W2096201930 @default.
- W2222734662 cites W2101625743 @default.
- W2222734662 cites W2101793721 @default.
- W2222734662 cites W2112649614 @default.
- W2222734662 cites W2114993924 @default.
- W2222734662 cites W2117795387 @default.
- W2222734662 cites W2122495474 @default.
- W2222734662 cites W2123068486 @default.
- W2222734662 cites W2123684374 @default.
- W2222734662 cites W2123912743 @default.
- W2222734662 cites W2126466050 @default.
- W2222734662 cites W2127315401 @default.
- W2222734662 cites W2131399112 @default.
- W2222734662 cites W2132209672 @default.
- W2222734662 cites W2137705579 @default.
- W2222734662 cites W2144858518 @default.
- W2222734662 cites W2145425707 @default.
- W2222734662 cites W2146419976 @default.
- W2222734662 cites W2149126001 @default.
- W2222734662 cites W2153278681 @default.
- W2222734662 cites W2154381503 @default.
- W2222734662 cites W2156162429 @default.
- W2222734662 cites W2158172521 @default.
- W2222734662 cites W2163796415 @default.
- W2222734662 cites W2166785811 @default.
- W2222734662 cites W2170786135 @default.
- W2222734662 cites W2170798091 @default.
- W2222734662 cites W2174701534 @default.
- W2222734662 cites W2323297555 @default.
- W2222734662 cites W2460363010 @default.
- W2222734662 doi "https://doi.org/10.4225/03/58b76e65530cf" @default.
- W2222734662 hasPublicationYear "2015" @default.
- W2222734662 type Work @default.
- W2222734662 sameAs 2222734662 @default.
- W2222734662 citedByCount "0" @default.
- W2222734662 crossrefType "dissertation" @default.
- W2222734662 hasAuthorship W2222734662A5060461088 @default.
- W2222734662 hasConcept C101649071 @default.
- W2222734662 hasConcept C120665830 @default.
- W2222734662 hasConcept C121332964 @default.
- W2222734662 hasConcept C127162648 @default.
- W2222734662 hasConcept C127413603 @default.
- W2222734662 hasConcept C129404179 @default.
- W2222734662 hasConcept C160724564 @default.
- W2222734662 hasConcept C204827203 @default.
- W2222734662 hasConcept C24326235 @default.
- W2222734662 hasConcept C2780202535 @default.
- W2222734662 hasConcept C2781393691 @default.
- W2222734662 hasConcept C40409654 @default.
- W2222734662 hasConcept C41008148 @default.