Matches in SemOpenAlex for { <https://semopenalex.org/work/W2222859485> ?p ?o ?g. }
- W2222859485 abstract "RNA sequencing (RNA-seq), a next-generation sequencing technique for transcriptome profiling, is being increasingly used, in part driven by the decreasing cost of sequencing. Nevertheless, the analysis of the massive amounts of data generated by large-scale RNA-seq remains a challenge. Multiple algorithms pertinent to basic analyses have been developed, and there is an increasing need to automate the use of these tools so as to obtain results in an efficient and user friendly manner. Increased automation and improved visualization of the results will help make the results and findings of the analyses readily available to experimental scientists.By combing the best open source tools developed for RNA-seq data analyses and the most advanced web 2.0 technologies, we have implemented QuickRNASeq, a pipeline for large-scale RNA-seq data analyses and visualization. The QuickRNASeq workflow consists of three main steps. In Step #1, each individual sample is processed, including mapping RNA-seq reads to a reference genome, counting the numbers of mapped reads, quality control of the aligned reads, and SNP (single nucleotide polymorphism) calling. Step #1 is computationally intensive, and can be processed in parallel. In Step #2, the results from individual samples are merged, and an integrated and interactive project report is generated. All analyses results in the report are accessible via a single HTML entry webpage. Step #3 is the data interpretation and presentation step. The rich visualization features implemented here allow end users to interactively explore the results of RNA-seq data analyses, and to gain more insights into RNA-seq datasets. In addition, we used a real world dataset to demonstrate the simplicity and efficiency of QuickRNASeq in RNA-seq data analyses and interactive visualizations. The seamless integration of automated capabilites with interactive visualizations in QuickRNASeq is not available in other published RNA-seq pipelines.The high degree of automation and interactivity in QuickRNASeq leads to a substantial reduction in the time and effort required prior to further downstream analyses and interpretation of the analyses findings. QuickRNASeq advances primary RNA-seq data analyses to the next level of automation, and is mature for public release and adoption." @default.
- W2222859485 created "2016-06-24" @default.
- W2222859485 creator A5014628406 @default.
- W2222859485 creator A5014652724 @default.
- W2222859485 creator A5042973046 @default.
- W2222859485 creator A5082823681 @default.
- W2222859485 creator A5086382447 @default.
- W2222859485 creator A5087583913 @default.
- W2222859485 creator A5090354306 @default.
- W2222859485 creator A5090674996 @default.
- W2222859485 date "2016-01-08" @default.
- W2222859485 modified "2023-10-17" @default.
- W2222859485 title "QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization" @default.
- W2222859485 cites W1490161904 @default.
- W2222859485 cites W1533942137 @default.
- W2222859485 cites W1544792501 @default.
- W2222859485 cites W1763607657 @default.
- W2222859485 cites W1816176398 @default.
- W2222859485 cites W1981509058 @default.
- W2222859485 cites W1999574084 @default.
- W2222859485 cites W2007218683 @default.
- W2222859485 cites W2013228575 @default.
- W2222859485 cites W2040975718 @default.
- W2222859485 cites W2042690128 @default.
- W2222859485 cites W2049126920 @default.
- W2222859485 cites W2054576015 @default.
- W2222859485 cites W2055770801 @default.
- W2222859485 cites W2057243176 @default.
- W2222859485 cites W2064641822 @default.
- W2222859485 cites W2074414424 @default.
- W2222859485 cites W2093253451 @default.
- W2222859485 cites W2096441981 @default.
- W2222859485 cites W2096465161 @default.
- W2222859485 cites W2107564978 @default.
- W2222859485 cites W2122532582 @default.
- W2222859485 cites W2126144698 @default.
- W2222859485 cites W2128934145 @default.
- W2222859485 cites W2130854614 @default.
- W2222859485 cites W2133237718 @default.
- W2222859485 cites W2134526812 @default.
- W2222859485 cites W2136170412 @default.
- W2222859485 cites W2137586531 @default.
- W2222859485 cites W2138207763 @default.
- W2222859485 cites W2140729960 @default.
- W2222859485 cites W2141458291 @default.
- W2222859485 cites W2142237411 @default.
- W2222859485 cites W2155943701 @default.
- W2222859485 cites W2169456326 @default.
- W2222859485 cites W2170592879 @default.
- W2222859485 cites W4210767115 @default.
- W2222859485 doi "https://doi.org/10.1186/s12864-015-2356-9" @default.
- W2222859485 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4706714" @default.
- W2222859485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26747388" @default.
- W2222859485 hasPublicationYear "2016" @default.
- W2222859485 type Work @default.
- W2222859485 sameAs 2222859485 @default.
- W2222859485 citedByCount "33" @default.
- W2222859485 countsByYear W22228594852016 @default.
- W2222859485 countsByYear W22228594852017 @default.
- W2222859485 countsByYear W22228594852018 @default.
- W2222859485 countsByYear W22228594852019 @default.
- W2222859485 countsByYear W22228594852020 @default.
- W2222859485 countsByYear W22228594852021 @default.
- W2222859485 countsByYear W22228594852022 @default.
- W2222859485 countsByYear W22228594852023 @default.
- W2222859485 crossrefType "journal-article" @default.
- W2222859485 hasAuthorship W2222859485A5014628406 @default.
- W2222859485 hasAuthorship W2222859485A5014652724 @default.
- W2222859485 hasAuthorship W2222859485A5042973046 @default.
- W2222859485 hasAuthorship W2222859485A5082823681 @default.
- W2222859485 hasAuthorship W2222859485A5086382447 @default.
- W2222859485 hasAuthorship W2222859485A5087583913 @default.
- W2222859485 hasAuthorship W2222859485A5090354306 @default.
- W2222859485 hasAuthorship W2222859485A5090674996 @default.
- W2222859485 hasBestOaLocation W22228594851 @default.
- W2222859485 hasConcept C104317684 @default.
- W2222859485 hasConcept C107397762 @default.
- W2222859485 hasConcept C111919701 @default.
- W2222859485 hasConcept C115901376 @default.
- W2222859485 hasConcept C124101348 @default.
- W2222859485 hasConcept C127413603 @default.
- W2222859485 hasConcept C150194340 @default.
- W2222859485 hasConcept C162317418 @default.
- W2222859485 hasConcept C177212765 @default.
- W2222859485 hasConcept C187191949 @default.
- W2222859485 hasConcept C199360897 @default.
- W2222859485 hasConcept C36464697 @default.
- W2222859485 hasConcept C41008148 @default.
- W2222859485 hasConcept C43521106 @default.
- W2222859485 hasConcept C54355233 @default.
- W2222859485 hasConcept C70721500 @default.
- W2222859485 hasConcept C77088390 @default.
- W2222859485 hasConcept C78519656 @default.
- W2222859485 hasConcept C86803240 @default.
- W2222859485 hasConceptScore W2222859485C104317684 @default.
- W2222859485 hasConceptScore W2222859485C107397762 @default.
- W2222859485 hasConceptScore W2222859485C111919701 @default.
- W2222859485 hasConceptScore W2222859485C115901376 @default.
- W2222859485 hasConceptScore W2222859485C124101348 @default.
- W2222859485 hasConceptScore W2222859485C127413603 @default.