Matches in SemOpenAlex for { <https://semopenalex.org/work/W2223071655> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2223071655 endingPage "252" @default.
- W2223071655 startingPage "239" @default.
- W2223071655 abstract "Summary The popularity of intelligent wells (I-wells), which provide layer-by-layer monitoring and control capability of production and injection, is growing. However, the number of available techniques for optimal control of I-wells is limited (Sarma et al. 2006; Alghareeb et al. 2009; Almeida et al. 2010; Grebenkin and Davies 2012). Currently, most of the I-wells that are equipped with interval control valves (ICVs) are operated to enhance the current production and to resolve problems associated with breakthrough of the unfavorable phase. This reactive strategy is unlikely to deliver the long-term optimum production. On the other side, the proactive-control strategy of I-wells, with its ambition to provide the optimum control for the entire well's production life, has the potential to maximize the cumulative oil production. This strategy, however, results in a high-dimensional, nonlinear, and constrained optimization problem. This study provides guidelines on selecting a suitable proactive optimization approach, by use of state-of-the-art stochastic gradient-approximation algorithms. A suitable optimization approach increases the practicality of proactive optimization for real field models under uncertain operational and subsurface conditions. We evaluate the simultaneous-perturbation stochastic approximation (SPSA) method (Spall 1992) and the ensemble-based optimization (EnOpt) method (Chen et al. 2009). In addition, we present a new derivation of the EnOpt by use of the concept of directional derivatives. The numerical results show that both SPSA and EnOpt methods can provide a fast solution to a large-scale and multiple I-well proactive optimization problem. A criterion for tuning the algorithms is proposed and the performance of both methods is compared for several test cases. The used methodology for estimating the gradient is shown to affect the application area of each algorithm. SPSA provides a rough estimate of the gradient and performs better in search environments, characterized by several local optima, especially with a large ensemble size. EnOpt was found to provide a smoother estimation of the gradient, resulting in a more-robust algorithm to the choice of the tuning parameters, and a better performance with a small ensemble size. Moreover, the final optimum operation obtained by EnOpt is smoother. Finally, the obtained criteria are used to perform proactive optimization of ICVs in a real field." @default.
- W2223071655 created "2016-06-24" @default.
- W2223071655 creator A5007464582 @default.
- W2223071655 creator A5031329010 @default.
- W2223071655 creator A5037652885 @default.
- W2223071655 creator A5087670361 @default.
- W2223071655 date "2016-01-06" @default.
- W2223071655 modified "2023-10-01" @default.
- W2223071655 title "Proactive Optimization of Intelligent-Well Production Using Stochastic Gradient-Based Algorithms" @default.
- W2223071655 cites W1614009013 @default.
- W2223071655 cites W1977642760 @default.
- W2223071655 cites W1978204888 @default.
- W2223071655 cites W1988729251 @default.
- W2223071655 cites W1994606703 @default.
- W2223071655 cites W1995558029 @default.
- W2223071655 cites W1997732986 @default.
- W2223071655 cites W2009364328 @default.
- W2223071655 cites W2020374204 @default.
- W2223071655 cites W2024279027 @default.
- W2223071655 cites W203276351 @default.
- W2223071655 cites W2042231183 @default.
- W2223071655 cites W2067201501 @default.
- W2223071655 cites W2073976396 @default.
- W2223071655 cites W2088616485 @default.
- W2223071655 cites W2143550754 @default.
- W2223071655 cites W2172517284 @default.
- W2223071655 cites W4234162519 @default.
- W2223071655 cites W4244720181 @default.
- W2223071655 doi "https://doi.org/10.2118/178918-pa" @default.
- W2223071655 hasPublicationYear "2016" @default.
- W2223071655 type Work @default.
- W2223071655 sameAs 2223071655 @default.
- W2223071655 citedByCount "14" @default.
- W2223071655 countsByYear W22230716552015 @default.
- W2223071655 countsByYear W22230716552016 @default.
- W2223071655 countsByYear W22230716552018 @default.
- W2223071655 countsByYear W22230716552019 @default.
- W2223071655 countsByYear W22230716552020 @default.
- W2223071655 countsByYear W22230716552023 @default.
- W2223071655 crossrefType "journal-article" @default.
- W2223071655 hasAuthorship W2223071655A5007464582 @default.
- W2223071655 hasAuthorship W2223071655A5031329010 @default.
- W2223071655 hasAuthorship W2223071655A5037652885 @default.
- W2223071655 hasAuthorship W2223071655A5087670361 @default.
- W2223071655 hasConcept C105795698 @default.
- W2223071655 hasConcept C11413529 @default.
- W2223071655 hasConcept C121332964 @default.
- W2223071655 hasConcept C126255220 @default.
- W2223071655 hasConcept C127413603 @default.
- W2223071655 hasConcept C137836250 @default.
- W2223071655 hasConcept C158622935 @default.
- W2223071655 hasConcept C194387892 @default.
- W2223071655 hasConcept C25197100 @default.
- W2223071655 hasConcept C2778904306 @default.
- W2223071655 hasConcept C2779880469 @default.
- W2223071655 hasConcept C33923547 @default.
- W2223071655 hasConcept C41008148 @default.
- W2223071655 hasConcept C62520636 @default.
- W2223071655 hasConcept C78519656 @default.
- W2223071655 hasConcept C8272713 @default.
- W2223071655 hasConceptScore W2223071655C105795698 @default.
- W2223071655 hasConceptScore W2223071655C11413529 @default.
- W2223071655 hasConceptScore W2223071655C121332964 @default.
- W2223071655 hasConceptScore W2223071655C126255220 @default.
- W2223071655 hasConceptScore W2223071655C127413603 @default.
- W2223071655 hasConceptScore W2223071655C137836250 @default.
- W2223071655 hasConceptScore W2223071655C158622935 @default.
- W2223071655 hasConceptScore W2223071655C194387892 @default.
- W2223071655 hasConceptScore W2223071655C25197100 @default.
- W2223071655 hasConceptScore W2223071655C2778904306 @default.
- W2223071655 hasConceptScore W2223071655C2779880469 @default.
- W2223071655 hasConceptScore W2223071655C33923547 @default.
- W2223071655 hasConceptScore W2223071655C41008148 @default.
- W2223071655 hasConceptScore W2223071655C62520636 @default.
- W2223071655 hasConceptScore W2223071655C78519656 @default.
- W2223071655 hasConceptScore W2223071655C8272713 @default.
- W2223071655 hasIssue "02" @default.
- W2223071655 hasLocation W22230716551 @default.
- W2223071655 hasOpenAccess W2223071655 @default.
- W2223071655 hasPrimaryLocation W22230716551 @default.
- W2223071655 hasRelatedWork W2060519020 @default.
- W2223071655 hasRelatedWork W2108879026 @default.
- W2223071655 hasRelatedWork W2144939935 @default.
- W2223071655 hasRelatedWork W2160374150 @default.
- W2223071655 hasRelatedWork W2340945706 @default.
- W2223071655 hasRelatedWork W2367516560 @default.
- W2223071655 hasRelatedWork W2734870733 @default.
- W2223071655 hasRelatedWork W3089040801 @default.
- W2223071655 hasRelatedWork W3205969783 @default.
- W2223071655 hasRelatedWork W641195677 @default.
- W2223071655 hasVolume "19" @default.
- W2223071655 isParatext "false" @default.
- W2223071655 isRetracted "false" @default.
- W2223071655 magId "2223071655" @default.
- W2223071655 workType "article" @default.