Matches in SemOpenAlex for { <https://semopenalex.org/work/W2224882246> ?p ?o ?g. }
- W2224882246 abstract "In a sparse representation based recognition scheme, it is critical to learn a desired dictionary, aiming both good representational power and discriminative performance. In this paper, we propose a new dictionary learning model for recognition applications, in which three strategies are adopted to achieve these two objectives simultaneously. First, a block-diagonal constraint is introduced into the model to eliminate the correlation between classes and enhance the discriminative performance. Second, a low-rank term is adopted to model the coherence within classes for refining the sparse representation of each class. Finally, instead of using the conventional over-complete dictionary, a specific dictionary constructed from the linear combination of the training samples is proposed to enhance the representational power of the dictionary and to improve the robustness of the sparse representation model. The proposed method is tested on several public datasets. The experimental results show the method outperforms most state-of-the-art methods." @default.
- W2224882246 created "2016-06-24" @default.
- W2224882246 creator A5015817857 @default.
- W2224882246 creator A5027030083 @default.
- W2224882246 creator A5027329007 @default.
- W2224882246 creator A5059859891 @default.
- W2224882246 creator A5082380547 @default.
- W2224882246 date "2016-01-07" @default.
- W2224882246 modified "2023-09-26" @default.
- W2224882246 title "Block-Diagonal Sparse Representation by Learning a Linear Combination Dictionary for Recognition" @default.
- W2224882246 cites W129703402 @default.
- W2224882246 cites W1529297639 @default.
- W2224882246 cites W1551219034 @default.
- W2224882246 cites W1558048826 @default.
- W2224882246 cites W1589707948 @default.
- W2224882246 cites W1591385104 @default.
- W2224882246 cites W1736339626 @default.
- W2224882246 cites W1863225007 @default.
- W2224882246 cites W1963932623 @default.
- W2224882246 cites W2000355138 @default.
- W2224882246 cites W2004465977 @default.
- W2224882246 cites W2027805700 @default.
- W2224882246 cites W2032768707 @default.
- W2224882246 cites W2046769852 @default.
- W2224882246 cites W2053544201 @default.
- W2224882246 cites W2056380775 @default.
- W2224882246 cites W2063153269 @default.
- W2224882246 cites W2069959554 @default.
- W2224882246 cites W2084716923 @default.
- W2224882246 cites W2086693793 @default.
- W2224882246 cites W2093922090 @default.
- W2224882246 cites W2096761622 @default.
- W2224882246 cites W2099321050 @default.
- W2224882246 cites W2101194540 @default.
- W2224882246 cites W2114122776 @default.
- W2224882246 cites W2118103795 @default.
- W2224882246 cites W2118550318 @default.
- W2224882246 cites W2125874614 @default.
- W2224882246 cites W2127271355 @default.
- W2224882246 cites W2128659236 @default.
- W2224882246 cites W2129812935 @default.
- W2224882246 cites W2139916508 @default.
- W2224882246 cites W2146966357 @default.
- W2224882246 cites W2153663612 @default.
- W2224882246 cites W2157785665 @default.
- W2224882246 cites W2160547390 @default.
- W2224882246 cites W2162915993 @default.
- W2224882246 cites W2164278908 @default.
- W2224882246 cites W2951085447 @default.
- W2224882246 cites W2994340921 @default.
- W2224882246 cites W343811051 @default.
- W2224882246 cites W79405465 @default.
- W2224882246 doi "https://doi.org/10.48550/arxiv.1601.01432" @default.
- W2224882246 hasPublicationYear "2016" @default.
- W2224882246 type Work @default.
- W2224882246 sameAs 2224882246 @default.
- W2224882246 citedByCount "2" @default.
- W2224882246 countsByYear W22248822462016 @default.
- W2224882246 crossrefType "posted-content" @default.
- W2224882246 hasAuthorship W2224882246A5015817857 @default.
- W2224882246 hasAuthorship W2224882246A5027030083 @default.
- W2224882246 hasAuthorship W2224882246A5027329007 @default.
- W2224882246 hasAuthorship W2224882246A5059859891 @default.
- W2224882246 hasAuthorship W2224882246A5082380547 @default.
- W2224882246 hasBestOaLocation W22248822461 @default.
- W2224882246 hasConcept C104317684 @default.
- W2224882246 hasConcept C105795698 @default.
- W2224882246 hasConcept C119857082 @default.
- W2224882246 hasConcept C124066611 @default.
- W2224882246 hasConcept C130367717 @default.
- W2224882246 hasConcept C153180895 @default.
- W2224882246 hasConcept C154771677 @default.
- W2224882246 hasConcept C154945302 @default.
- W2224882246 hasConcept C17744445 @default.
- W2224882246 hasConcept C185592680 @default.
- W2224882246 hasConcept C199539241 @default.
- W2224882246 hasConcept C2524010 @default.
- W2224882246 hasConcept C2776036281 @default.
- W2224882246 hasConcept C2776359362 @default.
- W2224882246 hasConcept C2777210771 @default.
- W2224882246 hasConcept C2781181686 @default.
- W2224882246 hasConcept C2988886741 @default.
- W2224882246 hasConcept C33923547 @default.
- W2224882246 hasConcept C41008148 @default.
- W2224882246 hasConcept C55493867 @default.
- W2224882246 hasConcept C59404180 @default.
- W2224882246 hasConcept C63479239 @default.
- W2224882246 hasConcept C94625758 @default.
- W2224882246 hasConcept C97931131 @default.
- W2224882246 hasConceptScore W2224882246C104317684 @default.
- W2224882246 hasConceptScore W2224882246C105795698 @default.
- W2224882246 hasConceptScore W2224882246C119857082 @default.
- W2224882246 hasConceptScore W2224882246C124066611 @default.
- W2224882246 hasConceptScore W2224882246C130367717 @default.
- W2224882246 hasConceptScore W2224882246C153180895 @default.
- W2224882246 hasConceptScore W2224882246C154771677 @default.
- W2224882246 hasConceptScore W2224882246C154945302 @default.
- W2224882246 hasConceptScore W2224882246C17744445 @default.
- W2224882246 hasConceptScore W2224882246C185592680 @default.
- W2224882246 hasConceptScore W2224882246C199539241 @default.