Matches in SemOpenAlex for { <https://semopenalex.org/work/W2225125975> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2225125975 endingPage "235" @default.
- W2225125975 startingPage "227" @default.
- W2225125975 abstract "In a lung nodule detection task, parenchyma segmentation is crucial to obtain the region of interest containing all the nodules. Thus, the challenge is to devise a methodology that includes all the lung nodules, particularly those close to the walls, as the juxtapleural nodules. In this paper, different region growing approaches are proposed for the automatic segmentation of the lung parenchyma. The methodology is organized in five different steps: first, the image intensity is corrected to improve the contrast of the lungs. With that, the fat area is obtained, automatically deriving the interior of the lung region. Then, the traquea is extracted by a 3D region growing, being subtracted from the lung region results. The next step is the division of the two lungs to guarantee that both are separated. And finally, the lung contours are refined to provide appropriate final results. The methodology was tested in 50 images taken from the LIDC image database, with a large variability and, specially, including different types of lung nodules. In particular, this dataset contains 158 nodules, from which 40 are juxtapleural nodules. Experimental results demonstrate that the method provides accurate lung regions, specially including the centers of 36 of the juxtapleural nodules. For the other 4, although the centers are not included, parts of their areas are retained in the segmentation, which is useful for lung nodule detection." @default.
- W2225125975 created "2016-06-24" @default.
- W2225125975 creator A5020399763 @default.
- W2225125975 creator A5032144370 @default.
- W2225125975 creator A5057860861 @default.
- W2225125975 creator A5081534736 @default.
- W2225125975 date "2014-01-01" @default.
- W2225125975 modified "2023-10-18" @default.
- W2225125975 title "Reliable Lung Segmentation Methodology by Including Juxtapleural Nodules" @default.
- W2225125975 cites W1986649315 @default.
- W2225125975 cites W2016672701 @default.
- W2225125975 cites W2024798729 @default.
- W2225125975 cites W2036390026 @default.
- W2225125975 cites W2041497154 @default.
- W2225125975 cites W2096579040 @default.
- W2225125975 cites W2105790404 @default.
- W2225125975 cites W2139281178 @default.
- W2225125975 cites W2147484997 @default.
- W2225125975 cites W2167803594 @default.
- W2225125975 doi "https://doi.org/10.1007/978-3-319-11755-3_26" @default.
- W2225125975 hasPublicationYear "2014" @default.
- W2225125975 type Work @default.
- W2225125975 sameAs 2225125975 @default.
- W2225125975 citedByCount "5" @default.
- W2225125975 countsByYear W22251259752015 @default.
- W2225125975 countsByYear W22251259752017 @default.
- W2225125975 countsByYear W22251259752018 @default.
- W2225125975 countsByYear W22251259752019 @default.
- W2225125975 countsByYear W22251259752022 @default.
- W2225125975 crossrefType "book-chapter" @default.
- W2225125975 hasAuthorship W2225125975A5020399763 @default.
- W2225125975 hasAuthorship W2225125975A5032144370 @default.
- W2225125975 hasAuthorship W2225125975A5057860861 @default.
- W2225125975 hasAuthorship W2225125975A5081534736 @default.
- W2225125975 hasConcept C124504099 @default.
- W2225125975 hasConcept C126322002 @default.
- W2225125975 hasConcept C127313418 @default.
- W2225125975 hasConcept C142724271 @default.
- W2225125975 hasConcept C151730666 @default.
- W2225125975 hasConcept C153180895 @default.
- W2225125975 hasConcept C154945302 @default.
- W2225125975 hasConcept C196822366 @default.
- W2225125975 hasConcept C2776731575 @default.
- W2225125975 hasConcept C2777714996 @default.
- W2225125975 hasConcept C41008148 @default.
- W2225125975 hasConcept C71924100 @default.
- W2225125975 hasConcept C89600930 @default.
- W2225125975 hasConceptScore W2225125975C124504099 @default.
- W2225125975 hasConceptScore W2225125975C126322002 @default.
- W2225125975 hasConceptScore W2225125975C127313418 @default.
- W2225125975 hasConceptScore W2225125975C142724271 @default.
- W2225125975 hasConceptScore W2225125975C151730666 @default.
- W2225125975 hasConceptScore W2225125975C153180895 @default.
- W2225125975 hasConceptScore W2225125975C154945302 @default.
- W2225125975 hasConceptScore W2225125975C196822366 @default.
- W2225125975 hasConceptScore W2225125975C2776731575 @default.
- W2225125975 hasConceptScore W2225125975C2777714996 @default.
- W2225125975 hasConceptScore W2225125975C41008148 @default.
- W2225125975 hasConceptScore W2225125975C71924100 @default.
- W2225125975 hasConceptScore W2225125975C89600930 @default.
- W2225125975 hasLocation W22251259751 @default.
- W2225125975 hasOpenAccess W2225125975 @default.
- W2225125975 hasPrimaryLocation W22251259751 @default.
- W2225125975 hasRelatedWork W134976887 @default.
- W2225125975 hasRelatedWork W1582206143 @default.
- W2225125975 hasRelatedWork W1840273037 @default.
- W2225125975 hasRelatedWork W2138214894 @default.
- W2225125975 hasRelatedWork W2464972745 @default.
- W2225125975 hasRelatedWork W2549765251 @default.
- W2225125975 hasRelatedWork W2734888972 @default.
- W2225125975 hasRelatedWork W3027394838 @default.
- W2225125975 hasRelatedWork W3161321444 @default.
- W2225125975 hasRelatedWork W4376624981 @default.
- W2225125975 isParatext "false" @default.
- W2225125975 isRetracted "false" @default.
- W2225125975 magId "2225125975" @default.
- W2225125975 workType "book-chapter" @default.