Matches in SemOpenAlex for { <https://semopenalex.org/work/W2227360003> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2227360003 abstract "In this article, the flow above a rotating disc, which was first studied by von Kármán for a Newtonian fluid, has been investigated for a Bingham fluid in three complementary but separate ways: by computational fluid dynamics (CFD), by a semi-analytical approach based on a new transformation law, and by another semi-analytical approach based on von Kármán’s transformation. The full equations, which consist of a set of partial differential equations, are solved by CFD simulations. The semi-analytical approach, in which a set of ordinary differential equations is solved, is developed here by simplifying the full equations invoking several assumptions. It is shown that the new transformation law performs better and reduces to von Kármán’s transformation as a limiting case. The present paper provides a closed-form expression for predicting the non-dimensional moment coefficient which works well in comparison with values obtained by the full CFD simulations. Detailed variations of tangential, axial, and radial components of the velocity field as a function of Reynolds number (Re) and Bingham number (Bn) have been determined. Many subtle flow physics and fluid dynamic issues are explored and critically explained for the first time in this paper. It is shown how two opposing forces, viz., the viscous and the inertial forces, determine certain important characteristics of the axial-profiles of non-dimensional radial velocity (e.g., the decrease of maxima, the shift of maxima, and the crossing over). It has been found that, at any Re, the maximum value of the magnitude of non-dimensional axial velocity decreases with an increase in Bn, thereby decreasing the net radial outflow. A comparison between the streamline patterns in Newtonian and Bingham fluids shows that, for a Bingham fluid, a streamline close to the disc-surface makes a higher number of complete turns around the axis of rotation. The differences between the self-similarity in a Newtonian fluid flow and the non-similarity in a Bingham fluid flow are expounded with the help of a few compelling visual representations. Some major differences and similarities between the flow of a Newtonian fluid above a rotating disc and that of a Bingham fluid, deduced in the present investigation, are brought together in a single table for ready reference. Two limiting cases, viz. Bn → 0 and Re → ∞, are considered. The present results show that the Bingham fluid solution progressively approaches the von Kármán’s solution for a Newtonian fluid as the Bingham number is progressively reduced to zero (Bn → 0). It is also established here that, for finite values of Bn, the Bingham fluid solution progressively approaches the von Kármán’s solution for a Newtonian fluid as the non-dimensional radius and Reynolds number increase. The higher the value of Bn, the higher is the required value of Re at which convergence with the solution for Newtonian fluid occurs." @default.
- W2227360003 created "2016-06-24" @default.
- W2227360003 creator A5011226790 @default.
- W2227360003 creator A5054970554 @default.
- W2227360003 date "2016-01-01" @default.
- W2227360003 modified "2023-09-27" @default.
- W2227360003 title "Analysis of von Kármán’s swirling flow on a rotating disc in Bingham fluids" @default.
- W2227360003 cites W1964799215 @default.
- W2227360003 cites W1972228530 @default.
- W2227360003 cites W1976255892 @default.
- W2227360003 cites W1985464817 @default.
- W2227360003 cites W1986557648 @default.
- W2227360003 cites W1987846383 @default.
- W2227360003 cites W1996806111 @default.
- W2227360003 cites W1997283059 @default.
- W2227360003 cites W2014442722 @default.
- W2227360003 cites W2020157117 @default.
- W2227360003 cites W2033252099 @default.
- W2227360003 cites W2036289734 @default.
- W2227360003 cites W2052777470 @default.
- W2227360003 cites W2056203102 @default.
- W2227360003 cites W2057791345 @default.
- W2227360003 cites W2057837997 @default.
- W2227360003 cites W2059487143 @default.
- W2227360003 cites W2066035123 @default.
- W2227360003 cites W2068847247 @default.
- W2227360003 cites W2072921737 @default.
- W2227360003 cites W2074779544 @default.
- W2227360003 cites W2096426093 @default.
- W2227360003 cites W2104334205 @default.
- W2227360003 cites W2104344930 @default.
- W2227360003 cites W2105216062 @default.
- W2227360003 cites W2108106711 @default.
- W2227360003 cites W2113941137 @default.
- W2227360003 cites W2128097135 @default.
- W2227360003 cites W2131315538 @default.
- W2227360003 cites W2162890609 @default.
- W2227360003 cites W2167847976 @default.
- W2227360003 cites W2314338840 @default.
- W2227360003 cites W2325956784 @default.
- W2227360003 doi "https://doi.org/10.1063/1.4937590" @default.
- W2227360003 hasPublicationYear "2016" @default.
- W2227360003 type Work @default.
- W2227360003 sameAs 2227360003 @default.
- W2227360003 citedByCount "18" @default.
- W2227360003 countsByYear W22273600032016 @default.
- W2227360003 countsByYear W22273600032017 @default.
- W2227360003 countsByYear W22273600032018 @default.
- W2227360003 countsByYear W22273600032020 @default.
- W2227360003 countsByYear W22273600032021 @default.
- W2227360003 countsByYear W22273600032022 @default.
- W2227360003 countsByYear W22273600032023 @default.
- W2227360003 crossrefType "journal-article" @default.
- W2227360003 hasAuthorship W2227360003A5011226790 @default.
- W2227360003 hasAuthorship W2227360003A5054970554 @default.
- W2227360003 hasConcept C121332964 @default.
- W2227360003 hasConcept C134306372 @default.
- W2227360003 hasConcept C1633027 @default.
- W2227360003 hasConcept C182748727 @default.
- W2227360003 hasConcept C196558001 @default.
- W2227360003 hasConcept C294558 @default.
- W2227360003 hasConcept C33923547 @default.
- W2227360003 hasConcept C38349280 @default.
- W2227360003 hasConcept C57879066 @default.
- W2227360003 hasConcept C62520636 @default.
- W2227360003 hasConcept C74650414 @default.
- W2227360003 hasConcept C90278072 @default.
- W2227360003 hasConcept C93779851 @default.
- W2227360003 hasConceptScore W2227360003C121332964 @default.
- W2227360003 hasConceptScore W2227360003C134306372 @default.
- W2227360003 hasConceptScore W2227360003C1633027 @default.
- W2227360003 hasConceptScore W2227360003C182748727 @default.
- W2227360003 hasConceptScore W2227360003C196558001 @default.
- W2227360003 hasConceptScore W2227360003C294558 @default.
- W2227360003 hasConceptScore W2227360003C33923547 @default.
- W2227360003 hasConceptScore W2227360003C38349280 @default.
- W2227360003 hasConceptScore W2227360003C57879066 @default.
- W2227360003 hasConceptScore W2227360003C62520636 @default.
- W2227360003 hasConceptScore W2227360003C74650414 @default.
- W2227360003 hasConceptScore W2227360003C90278072 @default.
- W2227360003 hasConceptScore W2227360003C93779851 @default.
- W2227360003 hasIssue "1" @default.
- W2227360003 hasLocation W22273600031 @default.
- W2227360003 hasOpenAccess W2227360003 @default.
- W2227360003 hasPrimaryLocation W22273600031 @default.
- W2227360003 hasRelatedWork W1978911306 @default.
- W2227360003 hasRelatedWork W1981113038 @default.
- W2227360003 hasRelatedWork W2009154752 @default.
- W2227360003 hasRelatedWork W2046439656 @default.
- W2227360003 hasRelatedWork W2125877407 @default.
- W2227360003 hasRelatedWork W2789646232 @default.
- W2227360003 hasRelatedWork W4225421660 @default.
- W2227360003 hasRelatedWork W4313537371 @default.
- W2227360003 hasRelatedWork W4320900785 @default.
- W2227360003 hasRelatedWork W2513190137 @default.
- W2227360003 hasVolume "28" @default.
- W2227360003 isParatext "false" @default.
- W2227360003 isRetracted "false" @default.
- W2227360003 magId "2227360003" @default.
- W2227360003 workType "article" @default.