Matches in SemOpenAlex for { <https://semopenalex.org/work/W2227525345> ?p ?o ?g. }
- W2227525345 endingPage "91" @default.
- W2227525345 startingPage "73" @default.
- W2227525345 abstract "Offshore oil and gas platforms are rapidly expanding worldwide to meet the growing demand for energy, and up-to-date knowledge of their number and spatial distribution is essential for management and safety maintenance of the marine environment. However, information on the distribution of these platforms over vast areas of the sea is extremely poor — partly because of business secrecy, national interests including security, and partly from bureaucratic inertia. Until recently, the automatic and accurate identification of platforms using optical imagery was challenging due to their subtle characteristics (i.e., low contrast and small size) and prevalent cloud cover. The Landsat-8 satellite, with its increasing Operational Land Imager (OLI) dataset with uniform quality and global coverage, may assist researchers in assessing the worldwide distribution of offshore platforms. Here we describe an automated method, based on time-series of OLI imagery, for extracting offshore platforms (AMEOP) which addresses the aforementioned problems. Specifically, two strategies (time-series and multi-refinement) were designed to address the challenges presented by heavy cloud cover over the sea. Three features documented in the OLI imagery time-series (contextual feature, and position- and size-invariance) were used to accurately discriminate offshore platforms from false positives. The AMEOP was applied to the Gulf of Thailand and 370 offshore platforms were automatically identified using 198 OLI images. Validation using Synthetic Aperture Radar (SAR) images and Chinese high-resolution satellite imagery demonstrated an omission error of 3.8% and a commission error below 1.0%. The AMEOP was also successfully extended to the Persian Gulf and northern Gulf of Mexico, 2346 and 2411 offshore platforms were respectively identified. We believe that the methodology presented herein provides a robust and cost-effective technique for improving the identification of offshore platforms over large areas of the sea; and that the accumulation of OLI data, together with the SAR images, has great potential for mapping and tracking of offshore platforms on a global scale, as well as for providing an early warning of oil spills around platforms and the improved estimation of their greenhouse gas emissions." @default.
- W2227525345 created "2016-06-24" @default.
- W2227525345 creator A5001957429 @default.
- W2227525345 creator A5009074414 @default.
- W2227525345 creator A5023755263 @default.
- W2227525345 creator A5051347413 @default.
- W2227525345 creator A5058342144 @default.
- W2227525345 creator A5070811797 @default.
- W2227525345 date "2016-03-01" @default.
- W2227525345 modified "2023-10-12" @default.
- W2227525345 title "Automatic extraction of offshore platforms using time-series Landsat-8 Operational Land Imager data" @default.
- W2227525345 cites W1973178306 @default.
- W2227525345 cites W1988126376 @default.
- W2227525345 cites W1988177826 @default.
- W2227525345 cites W1997309697 @default.
- W2227525345 cites W1997491172 @default.
- W2227525345 cites W1998605603 @default.
- W2227525345 cites W2003828928 @default.
- W2227525345 cites W2007285176 @default.
- W2227525345 cites W2007306483 @default.
- W2227525345 cites W2010989045 @default.
- W2227525345 cites W2014187500 @default.
- W2227525345 cites W2014334720 @default.
- W2227525345 cites W2021849967 @default.
- W2227525345 cites W2027165272 @default.
- W2227525345 cites W2032466061 @default.
- W2227525345 cites W2034104960 @default.
- W2227525345 cites W2034307837 @default.
- W2227525345 cites W2042978621 @default.
- W2227525345 cites W2047132894 @default.
- W2227525345 cites W2047549267 @default.
- W2227525345 cites W2048727199 @default.
- W2227525345 cites W2051364545 @default.
- W2227525345 cites W2053504185 @default.
- W2227525345 cites W2066590321 @default.
- W2227525345 cites W2075678339 @default.
- W2227525345 cites W2075984523 @default.
- W2227525345 cites W2077280622 @default.
- W2227525345 cites W2079735928 @default.
- W2227525345 cites W2094236270 @default.
- W2227525345 cites W2104569356 @default.
- W2227525345 cites W2108349280 @default.
- W2227525345 cites W2108951330 @default.
- W2227525345 cites W2110050729 @default.
- W2227525345 cites W2110791451 @default.
- W2227525345 cites W2111482234 @default.
- W2227525345 cites W2112260599 @default.
- W2227525345 cites W2113827159 @default.
- W2227525345 cites W2130658016 @default.
- W2227525345 cites W2137782143 @default.
- W2227525345 cites W2139709933 @default.
- W2227525345 cites W2141607694 @default.
- W2227525345 cites W2150553106 @default.
- W2227525345 cites W2154199500 @default.
- W2227525345 cites W2157675604 @default.
- W2227525345 cites W2157817668 @default.
- W2227525345 cites W2234425202 @default.
- W2227525345 cites W2316739595 @default.
- W2227525345 cites W4251080014 @default.
- W2227525345 doi "https://doi.org/10.1016/j.rse.2015.12.047" @default.
- W2227525345 hasPublicationYear "2016" @default.
- W2227525345 type Work @default.
- W2227525345 sameAs 2227525345 @default.
- W2227525345 citedByCount "29" @default.
- W2227525345 countsByYear W22275253452016 @default.
- W2227525345 countsByYear W22275253452018 @default.
- W2227525345 countsByYear W22275253452019 @default.
- W2227525345 countsByYear W22275253452020 @default.
- W2227525345 countsByYear W22275253452021 @default.
- W2227525345 countsByYear W22275253452022 @default.
- W2227525345 countsByYear W22275253452023 @default.
- W2227525345 crossrefType "journal-article" @default.
- W2227525345 hasAuthorship W2227525345A5001957429 @default.
- W2227525345 hasAuthorship W2227525345A5009074414 @default.
- W2227525345 hasAuthorship W2227525345A5023755263 @default.
- W2227525345 hasAuthorship W2227525345A5051347413 @default.
- W2227525345 hasAuthorship W2227525345A5058342144 @default.
- W2227525345 hasAuthorship W2227525345A5070811797 @default.
- W2227525345 hasConcept C111368507 @default.
- W2227525345 hasConcept C127313418 @default.
- W2227525345 hasConcept C143724316 @default.
- W2227525345 hasConcept C151730666 @default.
- W2227525345 hasConcept C162284963 @default.
- W2227525345 hasConcept C185592680 @default.
- W2227525345 hasConcept C39432304 @default.
- W2227525345 hasConcept C41008148 @default.
- W2227525345 hasConcept C43617362 @default.
- W2227525345 hasConcept C4725764 @default.
- W2227525345 hasConcept C62649853 @default.
- W2227525345 hasConceptScore W2227525345C111368507 @default.
- W2227525345 hasConceptScore W2227525345C127313418 @default.
- W2227525345 hasConceptScore W2227525345C143724316 @default.
- W2227525345 hasConceptScore W2227525345C151730666 @default.
- W2227525345 hasConceptScore W2227525345C162284963 @default.
- W2227525345 hasConceptScore W2227525345C185592680 @default.
- W2227525345 hasConceptScore W2227525345C39432304 @default.
- W2227525345 hasConceptScore W2227525345C41008148 @default.
- W2227525345 hasConceptScore W2227525345C43617362 @default.