Matches in SemOpenAlex for { <https://semopenalex.org/work/W2227722512> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2227722512 abstract "By concrete homotopy we mean homotopy based on a path functor, as in the original model found in the category of k-spaces. The point of the axiomatics is not that there are many models (right now we know of only three, which we will call here a, b and c ) but that the construction of the higher homotopy structure of an object in such a model is extremely simple and that models b and c have remarkable properties. So to be a model a finitely complete category C is required to have - A class of maps F, the fibrations which obey standard properties: closure under pullback and composition, with projections and isos being fibrations. - A path endofunctor P with the usual two natural projections to the identity endofunctor and unit path inclusion from the identity, wich the requirement that PX →X×X is a fibration. The essential point is that this functor is fibered w.r.t. F and that the above map is a fibration. These suffice to define a homotopy between maps, and we need additional axioms to say that PX is a groupoid modulo homotopy and that any fibration is equipped with an action of it, with the usual equations holding modulo homotopy. Thus in model a fibrations are just Hurewicz fibrations and P is a suitably fibered version of the usual path functor. In general P is not required to have a left (cylinder) adjoint, and it is not the case for models b, c. The fact that it is fibered allows an easy construction of the groupoid π1 for any fibration and since this groupoid is internal inside the world of fibrations, the π1 construction can be just iterated to give the higher homotopy structure. Thus the homotopy higher groupoid of X is not a set-groupoid, but something living in a suitable category of covers of X . Models c, d are based on small categories. First a path functor is defined in Cat, in which objects are zig-zags of maps, and morphisms suitably defined bimodules. This construction is similar but distinct from the Hammock construction given by Dwyer-Kan. Its natural notion of concatenation of paths is unfortunately not functorial. We know of two ways to remedy this: - In b concatenation is tweaked, which makes the unit valid only up to homotopy. Fibrations there are a kind generalized (cleft) Grothendieck bifibrations. - In c the natural--in an intuitive, not technical sense--order structure on P is quotiented out, which makes the fibrations ordinary (cleft) Grothendieck fibrations. Thus constructions b, c give a new approach to homotopy in Cat, much more concrete (and less technical) than the Quillen model structure defined by Thomason in 1980. In addition fibrations in model c are exponentiable, which allows the interpretation of dependent types and the lambda-calculus, with P obeying the necessary axioms to interpret the Martin-Lof identity predicate. This is being worked out by my student Robert Hein. Moreover this model has the counterintuitive property that path composition is strictly associative, with a strict unit. The first offshoot of this surprising result is a conjecture that generalizes the well-known theorem that for a category X the groupoid π1X is its universal associated groupoid: we formulate a conjecture that holds for any πn." @default.
- W2227722512 created "2016-06-24" @default.
- W2227722512 creator A5001564257 @default.
- W2227722512 date "2010-06-20" @default.
- W2227722512 modified "2023-09-25" @default.
- W2227722512 title "Axioms and Models for Concrete Homotopy" @default.
- W2227722512 hasPublicationYear "2010" @default.
- W2227722512 type Work @default.
- W2227722512 sameAs 2227722512 @default.
- W2227722512 citedByCount "0" @default.
- W2227722512 crossrefType "journal-article" @default.
- W2227722512 hasAuthorship W2227722512A5001564257 @default.
- W2227722512 hasConcept C118615104 @default.
- W2227722512 hasConcept C133776654 @default.
- W2227722512 hasConcept C153778094 @default.
- W2227722512 hasConcept C156772000 @default.
- W2227722512 hasConcept C168334404 @default.
- W2227722512 hasConcept C191752858 @default.
- W2227722512 hasConcept C199360897 @default.
- W2227722512 hasConcept C202444582 @default.
- W2227722512 hasConcept C2777735758 @default.
- W2227722512 hasConcept C33923547 @default.
- W2227722512 hasConcept C41008148 @default.
- W2227722512 hasConcept C54486226 @default.
- W2227722512 hasConcept C5961521 @default.
- W2227722512 hasConcept C79236096 @default.
- W2227722512 hasConcept C99633028 @default.
- W2227722512 hasConceptScore W2227722512C118615104 @default.
- W2227722512 hasConceptScore W2227722512C133776654 @default.
- W2227722512 hasConceptScore W2227722512C153778094 @default.
- W2227722512 hasConceptScore W2227722512C156772000 @default.
- W2227722512 hasConceptScore W2227722512C168334404 @default.
- W2227722512 hasConceptScore W2227722512C191752858 @default.
- W2227722512 hasConceptScore W2227722512C199360897 @default.
- W2227722512 hasConceptScore W2227722512C202444582 @default.
- W2227722512 hasConceptScore W2227722512C2777735758 @default.
- W2227722512 hasConceptScore W2227722512C33923547 @default.
- W2227722512 hasConceptScore W2227722512C41008148 @default.
- W2227722512 hasConceptScore W2227722512C54486226 @default.
- W2227722512 hasConceptScore W2227722512C5961521 @default.
- W2227722512 hasConceptScore W2227722512C79236096 @default.
- W2227722512 hasConceptScore W2227722512C99633028 @default.
- W2227722512 hasLocation W22277225121 @default.
- W2227722512 hasOpenAccess W2227722512 @default.
- W2227722512 hasPrimaryLocation W22277225121 @default.
- W2227722512 hasRelatedWork W1620217357 @default.
- W2227722512 hasRelatedWork W1933268633 @default.
- W2227722512 hasRelatedWork W1982346842 @default.
- W2227722512 hasRelatedWork W2025130155 @default.
- W2227722512 hasRelatedWork W2062620675 @default.
- W2227722512 hasRelatedWork W2135668246 @default.
- W2227722512 hasRelatedWork W2137662585 @default.
- W2227722512 hasRelatedWork W2184602767 @default.
- W2227722512 hasRelatedWork W2206311274 @default.
- W2227722512 hasRelatedWork W2378697147 @default.
- W2227722512 hasRelatedWork W2479622992 @default.
- W2227722512 hasRelatedWork W2577867144 @default.
- W2227722512 hasRelatedWork W2612532618 @default.
- W2227722512 hasRelatedWork W2796421523 @default.
- W2227722512 hasRelatedWork W2890439996 @default.
- W2227722512 hasRelatedWork W2986807556 @default.
- W2227722512 hasRelatedWork W3037122459 @default.
- W2227722512 hasRelatedWork W3098028600 @default.
- W2227722512 hasRelatedWork W75563549 @default.
- W2227722512 isParatext "false" @default.
- W2227722512 isRetracted "false" @default.
- W2227722512 magId "2227722512" @default.
- W2227722512 workType "article" @default.