Matches in SemOpenAlex for { <https://semopenalex.org/work/W2227779008> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2227779008 endingPage "50" @default.
- W2227779008 startingPage "43" @default.
- W2227779008 abstract "We discuss derivatives of the solution of the second order parameter dependent boundary value problem with an integral boundary condition ( ) ′′ ′ = , 1 1 ( ) = , 2 2 ( ) ( ) and its relationship to a second order nonhomogeneous differential equation which corresponds to the traditional variational equation. Specifically, we show that given a solution ( ) of the boundary value problem, the derivative of the solution with respect to the parameter is itself a solution to the aforementioned nonhomogeneous equation with interesting boundary conditions. Introduction In this paper, we differentiate, with respect to , the solution of the nonlocal second order differential equation ( ) in ′′ ′ = , (1) with parameter and boundary conditions 1 1 2 2 ( ) ( ) ( ) (2) where in ; note the integral boundary condition. In particular, we show the Corresponding author: Jeffrey W. Lyons, Department of Mathematics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, USA. E-mail: jlyons@nova.edu. The Derivative of a Solution to a Second Order Parameter Dependent Boundary Value Problem with a Nonlocal Integral Boundary Condition 44 relationship between the derivative of the solution ( ) to (1), (2) and the nonhomogeneous equation along ( ) ′′ ′ = + + . (3) The nonhomogeneous equation (3) is a corresponding equation of the traditional variational equation along ( ) ′′ ′ = + . (4) The study of the relationship between the derivative of a solution to a differential equation and its associated variational equation is first attributed to Peano by Hartman in [5]. The theory presented in Hartman’s book was developed for initial value problems. Since then, much research has been done to find analogues of Peano’s work to various types of boundary value problems. One can find examples with a wide variety of domains and boundary conditions as can be seen in [3, 4, 11, 14] for differential equations, [1, 2, 7, 8, 12] for difference equations, and [13] for dynamic equations on time scales. The preceding papers were written with a parameter independent differential equation. The primary motivation for the research presented here is from two articles [10] and [6]. In the former, the authors studied differentiation of solutions of a differential equation with an integral boundary condition and parameter independence. The second article covers a discrete version of the topic but introduces the parameter . The work presented here expands directly upon that found in [10] by adding parameter dependence and studying the derivative of the solution with respect to theparameter. One interesting theme in each of the preceding works is the method of writing the boundary value problem in terms of an initial value problem which in turn allows the author to apply a version of Peano’s theorem for initial value problems which leads to the desired result. The same technique is employed to achieve our results here. The remainder of the paper is arranged as follows. Section 2 develops the conditions necessary for our theorems and introduces the theorems employed to obtain our results. To conclude, in Section 3 the main result of the paper is presented and followed with its proof. Assumptions and Theorems Before presenting the results of the paper, we will impose the following hypotheses. First, we require The Derivative of a Solution to a Second Order Parameter Dependent Boundary Value Problem with a Nonlocal Integral Boundary Condition 45 that the differential equation (1) and its derivatives are continuous: (i) 3 ( ) ( ) : × → is continuous, (ii) 3 ( ) ( ) ∂ / ∂ : × → is continuous ( 1 2) = , , and (iii) 3 ( ) ( ) ∂ / ∂ : × → is continuous. Second, we require that solutions of (1) be unique implying the condition: (iv) Given , ∈ and in , if ( ) and ( ) are solutions of (1), (2), then on ( ) " @default.
- W2227779008 created "2016-06-24" @default.
- W2227779008 creator A5004870914 @default.
- W2227779008 creator A5015495305 @default.
- W2227779008 date "2015-01-01" @default.
- W2227779008 modified "2023-09-23" @default.
- W2227779008 title "The Derivative of a Solution to a Second Order Parameter Dependent Boundary Value Problem with a Nonlocal Integral Boundary Condition" @default.
- W2227779008 cites W2004898492 @default.
- W2227779008 cites W2026934772 @default.
- W2227779008 cites W2051772438 @default.
- W2227779008 cites W2100562693 @default.
- W2227779008 cites W2107034704 @default.
- W2227779008 cites W2125965884 @default.
- W2227779008 cites W2140074085 @default.
- W2227779008 cites W2288219991 @default.
- W2227779008 cites W2319751852 @default.
- W2227779008 cites W2742470390 @default.
- W2227779008 cites W3141151088 @default.
- W2227779008 cites W993434946 @default.
- W2227779008 hasPublicationYear "2015" @default.
- W2227779008 type Work @default.
- W2227779008 sameAs 2227779008 @default.
- W2227779008 citedByCount "0" @default.
- W2227779008 crossrefType "journal-article" @default.
- W2227779008 hasAuthorship W2227779008A5004870914 @default.
- W2227779008 hasAuthorship W2227779008A5015495305 @default.
- W2227779008 hasConcept C106947605 @default.
- W2227779008 hasConcept C108257041 @default.
- W2227779008 hasConcept C134306372 @default.
- W2227779008 hasConcept C154416045 @default.
- W2227779008 hasConcept C182310444 @default.
- W2227779008 hasConcept C27016315 @default.
- W2227779008 hasConcept C33923547 @default.
- W2227779008 hasConcept C42045870 @default.
- W2227779008 hasConcept C65826597 @default.
- W2227779008 hasConcept C78045399 @default.
- W2227779008 hasConceptScore W2227779008C106947605 @default.
- W2227779008 hasConceptScore W2227779008C108257041 @default.
- W2227779008 hasConceptScore W2227779008C134306372 @default.
- W2227779008 hasConceptScore W2227779008C154416045 @default.
- W2227779008 hasConceptScore W2227779008C182310444 @default.
- W2227779008 hasConceptScore W2227779008C27016315 @default.
- W2227779008 hasConceptScore W2227779008C33923547 @default.
- W2227779008 hasConceptScore W2227779008C42045870 @default.
- W2227779008 hasConceptScore W2227779008C65826597 @default.
- W2227779008 hasConceptScore W2227779008C78045399 @default.
- W2227779008 hasIssue "2" @default.
- W2227779008 hasLocation W22277790081 @default.
- W2227779008 hasOpenAccess W2227779008 @default.
- W2227779008 hasPrimaryLocation W22277790081 @default.
- W2227779008 hasRelatedWork W155515107 @default.
- W2227779008 hasRelatedWork W1905900179 @default.
- W2227779008 hasRelatedWork W1983469042 @default.
- W2227779008 hasRelatedWork W2017657722 @default.
- W2227779008 hasRelatedWork W2049309906 @default.
- W2227779008 hasRelatedWork W2050175764 @default.
- W2227779008 hasRelatedWork W2062647951 @default.
- W2227779008 hasRelatedWork W2067121143 @default.
- W2227779008 hasRelatedWork W2069171752 @default.
- W2227779008 hasRelatedWork W2070982160 @default.
- W2227779008 hasRelatedWork W2077327206 @default.
- W2227779008 hasRelatedWork W2092938122 @default.
- W2227779008 hasRelatedWork W2093724571 @default.
- W2227779008 hasRelatedWork W2096413710 @default.
- W2227779008 hasRelatedWork W2150380700 @default.
- W2227779008 hasRelatedWork W2178255491 @default.
- W2227779008 hasRelatedWork W2491462310 @default.
- W2227779008 hasRelatedWork W2606825881 @default.
- W2227779008 hasRelatedWork W2897839556 @default.
- W2227779008 hasRelatedWork W3139669186 @default.
- W2227779008 hasVolume "2015" @default.
- W2227779008 isParatext "false" @default.
- W2227779008 isRetracted "false" @default.
- W2227779008 magId "2227779008" @default.
- W2227779008 workType "article" @default.