Matches in SemOpenAlex for { <https://semopenalex.org/work/W2227807162> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2227807162 abstract "This article is part of my upcoming masters thesis which investigates the following open problem from the book, Free Lattices, by R.Freese, J.Jezek, and J.B. Nation published in 1995: Which lattices (and in particular which countable lattices) are sublattices of a free lattice? Despite partial progress over the decades, the problem is still unsolved. There is emphasis on the countable case because the current body of knowledge on sublattices of free lattices is most concentrated on when these sublattices are countably infinite. It is known that sublattices of free lattices which are finite can be characterized as being those lattices which satisfy Whitman's condition and are semidistributive. This assertion was conjectured by B. Jonsson in the 1960's and proven by J.B. Nation in 1980. However, there is a desire for a new proof to this deep result as Nation's proof is very involved and more insight into sublattices of free lattices is sought after. In this article, a sufficient condition involving a construct known as a join minimal pair, or just a minimal pair, implying J'onsson's conjecture is proven. Minimal pairs were first defined by H. Gaskill when analysing sharply transferable lattices. Using this sufficient condition, research by I.Rival and B.Sands is used to compare this condition with properties of finite semidistributive lattices and in the process refute the main assertion of a manuscript by H.Muhle. Moreover, inspired by the approaches used by Henri Muhle, I will make a partial result which investigates a possible forbidden sublattice characterization involving breadth-two planar semidistributive lattices. To the best of my knowledge, the two results of this article (the sufficient condition for Jonsson's conjecture and the partial result aforementioned) are new." @default.
- W2227807162 created "2016-06-24" @default.
- W2227807162 creator A5051504805 @default.
- W2227807162 date "2015-10-19" @default.
- W2227807162 modified "2023-09-27" @default.
- W2227807162 title "A Sufficient Condition for J'onsson's Conjecture and its Relationship with Finite Semidistributive lattices" @default.
- W2227807162 cites W2068279999 @default.
- W2227807162 cites W2329170724 @default.
- W2227807162 hasPublicationYear "2015" @default.
- W2227807162 type Work @default.
- W2227807162 sameAs 2227807162 @default.
- W2227807162 citedByCount "0" @default.
- W2227807162 crossrefType "posted-content" @default.
- W2227807162 hasAuthorship W2227807162A5051504805 @default.
- W2227807162 hasConcept C110729354 @default.
- W2227807162 hasConcept C121332964 @default.
- W2227807162 hasConcept C199360897 @default.
- W2227807162 hasConcept C202444582 @default.
- W2227807162 hasConcept C24890656 @default.
- W2227807162 hasConcept C2780990831 @default.
- W2227807162 hasConcept C2781204021 @default.
- W2227807162 hasConcept C33923547 @default.
- W2227807162 hasConcept C40422974 @default.
- W2227807162 hasConcept C41008148 @default.
- W2227807162 hasConceptScore W2227807162C110729354 @default.
- W2227807162 hasConceptScore W2227807162C121332964 @default.
- W2227807162 hasConceptScore W2227807162C199360897 @default.
- W2227807162 hasConceptScore W2227807162C202444582 @default.
- W2227807162 hasConceptScore W2227807162C24890656 @default.
- W2227807162 hasConceptScore W2227807162C2780990831 @default.
- W2227807162 hasConceptScore W2227807162C2781204021 @default.
- W2227807162 hasConceptScore W2227807162C33923547 @default.
- W2227807162 hasConceptScore W2227807162C40422974 @default.
- W2227807162 hasConceptScore W2227807162C41008148 @default.
- W2227807162 hasLocation W22278071621 @default.
- W2227807162 hasOpenAccess W2227807162 @default.
- W2227807162 hasPrimaryLocation W22278071621 @default.
- W2227807162 hasRelatedWork W124005067 @default.
- W2227807162 hasRelatedWork W1807041952 @default.
- W2227807162 hasRelatedWork W1970110860 @default.
- W2227807162 hasRelatedWork W1995164411 @default.
- W2227807162 hasRelatedWork W1995230768 @default.
- W2227807162 hasRelatedWork W2022537319 @default.
- W2227807162 hasRelatedWork W2056109783 @default.
- W2227807162 hasRelatedWork W2057721731 @default.
- W2227807162 hasRelatedWork W2068123918 @default.
- W2227807162 hasRelatedWork W2130794474 @default.
- W2227807162 hasRelatedWork W2197826553 @default.
- W2227807162 hasRelatedWork W2223313178 @default.
- W2227807162 hasRelatedWork W2226604542 @default.
- W2227807162 hasRelatedWork W2393055094 @default.
- W2227807162 hasRelatedWork W2951236367 @default.
- W2227807162 hasRelatedWork W3127406290 @default.
- W2227807162 hasRelatedWork W3199275967 @default.
- W2227807162 hasRelatedWork W99230893 @default.
- W2227807162 hasRelatedWork W174490306 @default.
- W2227807162 hasRelatedWork W2434640147 @default.
- W2227807162 isParatext "false" @default.
- W2227807162 isRetracted "false" @default.
- W2227807162 magId "2227807162" @default.
- W2227807162 workType "article" @default.