Matches in SemOpenAlex for { <https://semopenalex.org/work/W2228575173> ?p ?o ?g. }
- W2228575173 endingPage "27" @default.
- W2228575173 startingPage "13" @default.
- W2228575173 abstract "Pain assessment through observational pain scales is necessary for special categories of patients such as neonates, patients with dementia, and critically ill patients. The recently introduced Prkachin–Solomon score allows pain assessment directly from facial images opening the path for multiple assistive applications. In this paper, we proposed a system built upon the Histograms of Topographical (HoT) features, which are a generalization of the topographical primal sketch, for the description of the face parts contributing to the mentioned score. We further propose a semi-supervised, clustering oriented self-taught learning procedure developed on the Cohn–Kanade emotion oriented database by adapting the spectral regression. To make use of inter-frame pain correlation we introduce a machine learning based temporal filtering. We use this procedure to improve the discrimination between different pain intensity levels and the generalization with respect to the monitored persons, while testing on the UNBC McMaster Shoulder Pain database." @default.
- W2228575173 created "2016-06-24" @default.
- W2228575173 creator A5020182280 @default.
- W2228575173 creator A5037100321 @default.
- W2228575173 creator A5053527873 @default.
- W2228575173 creator A5054380385 @default.
- W2228575173 creator A5090658521 @default.
- W2228575173 date "2016-12-01" @default.
- W2228575173 modified "2023-09-26" @default.
- W2228575173 title "Pain intensity estimation by a self-taught selection of histograms of topographical features" @default.
- W2228575173 cites W104808990 @default.
- W2228575173 cites W1554258465 @default.
- W2228575173 cites W1558605974 @default.
- W2228575173 cites W1588539311 @default.
- W2228575173 cites W164333804 @default.
- W2228575173 cites W1652898357 @default.
- W2228575173 cites W1831645807 @default.
- W2228575173 cites W1835456670 @default.
- W2228575173 cites W1867691547 @default.
- W2228575173 cites W1978963692 @default.
- W2228575173 cites W1980943404 @default.
- W2228575173 cites W2000367729 @default.
- W2228575173 cites W2000613743 @default.
- W2228575173 cites W2003370853 @default.
- W2228575173 cites W2003823024 @default.
- W2228575173 cites W2008635359 @default.
- W2228575173 cites W2016327614 @default.
- W2228575173 cites W2022274350 @default.
- W2228575173 cites W2023200581 @default.
- W2228575173 cites W2029847666 @default.
- W2228575173 cites W2029871522 @default.
- W2228575173 cites W2030664596 @default.
- W2228575173 cites W2042243448 @default.
- W2228575173 cites W2042316011 @default.
- W2228575173 cites W2047156641 @default.
- W2228575173 cites W2060451633 @default.
- W2228575173 cites W2066658540 @default.
- W2228575173 cites W2069367455 @default.
- W2228575173 cites W2090213288 @default.
- W2228575173 cites W2090495691 @default.
- W2228575173 cites W2098615198 @default.
- W2228575173 cites W2101545465 @default.
- W2228575173 cites W2102841407 @default.
- W2228575173 cites W2103943262 @default.
- W2228575173 cites W2106043670 @default.
- W2228575173 cites W2118183099 @default.
- W2228575173 cites W2119605622 @default.
- W2228575173 cites W2122922389 @default.
- W2228575173 cites W2123340620 @default.
- W2228575173 cites W2125027820 @default.
- W2228575173 cites W2125127226 @default.
- W2228575173 cites W2129534965 @default.
- W2228575173 cites W2130103520 @default.
- W2228575173 cites W2137594313 @default.
- W2228575173 cites W2141082694 @default.
- W2228575173 cites W2143334932 @default.
- W2228575173 cites W2145962650 @default.
- W2228575173 cites W2148071321 @default.
- W2228575173 cites W2151103935 @default.
- W2228575173 cites W2152826865 @default.
- W2228575173 cites W2153635508 @default.
- W2228575173 cites W2154872931 @default.
- W2228575173 cites W2156142937 @default.
- W2228575173 cites W2156503193 @default.
- W2228575173 cites W2161969291 @default.
- W2228575173 cites W2165698076 @default.
- W2228575173 cites W2166087694 @default.
- W2228575173 cites W2168671183 @default.
- W2228575173 cites W2168770574 @default.
- W2228575173 cites W2170073780 @default.
- W2228575173 cites W2216117368 @default.
- W2228575173 cites W2399874331 @default.
- W2228575173 cites W3041284877 @default.
- W2228575173 cites W62203920 @default.
- W2228575173 cites W99680085 @default.
- W2228575173 doi "https://doi.org/10.1016/j.imavis.2016.08.014" @default.
- W2228575173 hasPublicationYear "2016" @default.
- W2228575173 type Work @default.
- W2228575173 sameAs 2228575173 @default.
- W2228575173 citedByCount "8" @default.
- W2228575173 countsByYear W22285751732017 @default.
- W2228575173 countsByYear W22285751732018 @default.
- W2228575173 countsByYear W22285751732019 @default.
- W2228575173 countsByYear W22285751732020 @default.
- W2228575173 countsByYear W22285751732021 @default.
- W2228575173 countsByYear W22285751732022 @default.
- W2228575173 crossrefType "journal-article" @default.
- W2228575173 hasAuthorship W2228575173A5020182280 @default.
- W2228575173 hasAuthorship W2228575173A5037100321 @default.
- W2228575173 hasAuthorship W2228575173A5053527873 @default.
- W2228575173 hasAuthorship W2228575173A5054380385 @default.
- W2228575173 hasAuthorship W2228575173A5090658521 @default.
- W2228575173 hasBestOaLocation W22285751732 @default.
- W2228575173 hasConcept C11413529 @default.
- W2228575173 hasConcept C115961682 @default.
- W2228575173 hasConcept C119857082 @default.
- W2228575173 hasConcept C126042441 @default.
- W2228575173 hasConcept C134306372 @default.