Matches in SemOpenAlex for { <https://semopenalex.org/work/W2229073095> ?p ?o ?g. }
- W2229073095 endingPage "39" @default.
- W2229073095 startingPage "30" @default.
- W2229073095 abstract "Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example, structure-based methods identified an already known active ligand from the widely-used bechmarking decoy molecule set. Although prospective VS against one commercially available database with around 100,000 drug-like molecules did not retrieve many testworthy hits, one novel hit molecule with pIC50 value of 6.6, was identified. Furthermore, our small in-house compound collection of easy-to-synthesize molecules was virtually screened against ERα, yielding to five hit candidates, which were found to be active in vitro having pIC50 values from 5.5 to 6.5." @default.
- W2229073095 created "2016-06-24" @default.
- W2229073095 creator A5016275683 @default.
- W2229073095 creator A5025766741 @default.
- W2229073095 creator A5037452795 @default.
- W2229073095 creator A5079563568 @default.
- W2229073095 creator A5090456130 @default.
- W2229073095 date "2016-03-01" @default.
- W2229073095 modified "2023-09-26" @default.
- W2229073095 title "Identification of estrogen receptor α ligands with virtual screening techniques" @default.
- W2229073095 cites W1516402388 @default.
- W2229073095 cites W1561812513 @default.
- W2229073095 cites W1792751107 @default.
- W2229073095 cites W1974880836 @default.
- W2229073095 cites W1979683091 @default.
- W2229073095 cites W1981185254 @default.
- W2229073095 cites W1981708871 @default.
- W2229073095 cites W1985588649 @default.
- W2229073095 cites W1988437166 @default.
- W2229073095 cites W1995850373 @default.
- W2229073095 cites W1999491936 @default.
- W2229073095 cites W2000228466 @default.
- W2229073095 cites W2008732224 @default.
- W2229073095 cites W2010471052 @default.
- W2229073095 cites W2015037838 @default.
- W2229073095 cites W2015688756 @default.
- W2229073095 cites W2028010162 @default.
- W2229073095 cites W2036100857 @default.
- W2229073095 cites W2037167896 @default.
- W2229073095 cites W2039709045 @default.
- W2229073095 cites W2043509228 @default.
- W2229073095 cites W2045389096 @default.
- W2229073095 cites W2050273205 @default.
- W2229073095 cites W2058878968 @default.
- W2229073095 cites W2065170882 @default.
- W2229073095 cites W2069123478 @default.
- W2229073095 cites W2074682587 @default.
- W2229073095 cites W2078371139 @default.
- W2229073095 cites W2093426296 @default.
- W2229073095 cites W2096541451 @default.
- W2229073095 cites W2102377211 @default.
- W2229073095 cites W2103794058 @default.
- W2229073095 cites W2121895929 @default.
- W2229073095 cites W2146211839 @default.
- W2229073095 cites W2147421370 @default.
- W2229073095 cites W2148950790 @default.
- W2229073095 cites W2150981663 @default.
- W2229073095 cites W2152630148 @default.
- W2229073095 cites W2289116984 @default.
- W2229073095 cites W2323179506 @default.
- W2229073095 cites W2326912336 @default.
- W2229073095 cites W2337120805 @default.
- W2229073095 cites W2413169921 @default.
- W2229073095 doi "https://doi.org/10.1016/j.jmgm.2015.12.006" @default.
- W2229073095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26774287" @default.
- W2229073095 hasPublicationYear "2016" @default.
- W2229073095 type Work @default.
- W2229073095 sameAs 2229073095 @default.
- W2229073095 citedByCount "27" @default.
- W2229073095 countsByYear W22290730952016 @default.
- W2229073095 countsByYear W22290730952018 @default.
- W2229073095 countsByYear W22290730952019 @default.
- W2229073095 countsByYear W22290730952020 @default.
- W2229073095 countsByYear W22290730952021 @default.
- W2229073095 countsByYear W22290730952022 @default.
- W2229073095 countsByYear W22290730952023 @default.
- W2229073095 crossrefType "journal-article" @default.
- W2229073095 hasAuthorship W2229073095A5016275683 @default.
- W2229073095 hasAuthorship W2229073095A5025766741 @default.
- W2229073095 hasAuthorship W2229073095A5037452795 @default.
- W2229073095 hasAuthorship W2229073095A5079563568 @default.
- W2229073095 hasAuthorship W2229073095A5090456130 @default.
- W2229073095 hasBestOaLocation W22290730952 @default.
- W2229073095 hasConcept C103697762 @default.
- W2229073095 hasConcept C104317684 @default.
- W2229073095 hasConcept C161624437 @default.
- W2229073095 hasConcept C170493617 @default.
- W2229073095 hasConcept C185592680 @default.
- W2229073095 hasConcept C203394866 @default.
- W2229073095 hasConcept C21951064 @default.
- W2229073095 hasConcept C2775905019 @default.
- W2229073095 hasConcept C2779179475 @default.
- W2229073095 hasConcept C41008148 @default.
- W2229073095 hasConcept C55493867 @default.
- W2229073095 hasConcept C56173144 @default.
- W2229073095 hasConcept C60644358 @default.
- W2229073095 hasConcept C70721500 @default.
- W2229073095 hasConcept C71240020 @default.
- W2229073095 hasConcept C74187038 @default.
- W2229073095 hasConcept C86803240 @default.
- W2229073095 hasConceptScore W2229073095C103697762 @default.
- W2229073095 hasConceptScore W2229073095C104317684 @default.
- W2229073095 hasConceptScore W2229073095C161624437 @default.
- W2229073095 hasConceptScore W2229073095C170493617 @default.
- W2229073095 hasConceptScore W2229073095C185592680 @default.
- W2229073095 hasConceptScore W2229073095C203394866 @default.
- W2229073095 hasConceptScore W2229073095C21951064 @default.
- W2229073095 hasConceptScore W2229073095C2775905019 @default.