Matches in SemOpenAlex for { <https://semopenalex.org/work/W2229387242> ?p ?o ?g. }
- W2229387242 endingPage "1824" @default.
- W2229387242 startingPage "1811" @default.
- W2229387242 abstract "We propose novel model transfer-learning methods that refine a decision forest model M learned within a source domain using a training set sampled from a target domain, assumed to be a variation of the source. We present two random forest transfer algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds) associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the two forests. The proposed methods exhibit impressive experimental results over a range of problems." @default.
- W2229387242 created "2016-06-24" @default.
- W2229387242 creator A5006419939 @default.
- W2229387242 creator A5022928755 @default.
- W2229387242 creator A5025669300 @default.
- W2229387242 creator A5036260775 @default.
- W2229387242 creator A5057957006 @default.
- W2229387242 date "2017-09-01" @default.
- W2229387242 modified "2023-10-10" @default.
- W2229387242 title "Learn on Source, Refine on Target: A Model Transfer Learning Framework with Random Forests" @default.
- W2229387242 cites W1588036380 @default.
- W2229387242 cites W1607832978 @default.
- W2229387242 cites W1652454221 @default.
- W2229387242 cites W1747560487 @default.
- W2229387242 cites W1916789495 @default.
- W2229387242 cites W1975846642 @default.
- W2229387242 cites W1978920452 @default.
- W2229387242 cites W1981658663 @default.
- W2229387242 cites W2030290736 @default.
- W2229387242 cites W2049018287 @default.
- W2229387242 cites W2050549724 @default.
- W2229387242 cites W2060280062 @default.
- W2229387242 cites W2064447488 @default.
- W2229387242 cites W2065180801 @default.
- W2229387242 cites W2068714596 @default.
- W2229387242 cites W2069057437 @default.
- W2229387242 cites W2069816994 @default.
- W2229387242 cites W2075728230 @default.
- W2229387242 cites W2092012321 @default.
- W2229387242 cites W2098027503 @default.
- W2229387242 cites W2099454382 @default.
- W2229387242 cites W2099501835 @default.
- W2229387242 cites W2099971677 @default.
- W2229387242 cites W2100659887 @default.
- W2229387242 cites W2103459159 @default.
- W2229387242 cites W2104068492 @default.
- W2229387242 cites W2104094955 @default.
- W2229387242 cites W2110518760 @default.
- W2229387242 cites W2114103087 @default.
- W2229387242 cites W2120149881 @default.
- W2229387242 cites W2120559187 @default.
- W2229387242 cites W2120708938 @default.
- W2229387242 cites W2122156965 @default.
- W2229387242 cites W2122838776 @default.
- W2229387242 cites W2122922389 @default.
- W2229387242 cites W2123328574 @default.
- W2229387242 cites W2137742200 @default.
- W2229387242 cites W2143104527 @default.
- W2229387242 cites W2146950091 @default.
- W2229387242 cites W2148522164 @default.
- W2229387242 cites W2149676790 @default.
- W2229387242 cites W2149991487 @default.
- W2229387242 cites W2154913025 @default.
- W2229387242 cites W2158108973 @default.
- W2229387242 cites W2158514621 @default.
- W2229387242 cites W2160644528 @default.
- W2229387242 cites W2165698076 @default.
- W2229387242 cites W2498672755 @default.
- W2229387242 cites W2911964244 @default.
- W2229387242 cites W3104240813 @default.
- W2229387242 cites W4239943352 @default.
- W2229387242 doi "https://doi.org/10.1109/tpami.2016.2618118" @default.
- W2229387242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113392" @default.
- W2229387242 hasPublicationYear "2017" @default.
- W2229387242 type Work @default.
- W2229387242 sameAs 2229387242 @default.
- W2229387242 citedByCount "74" @default.
- W2229387242 countsByYear W22293872422016 @default.
- W2229387242 countsByYear W22293872422017 @default.
- W2229387242 countsByYear W22293872422018 @default.
- W2229387242 countsByYear W22293872422019 @default.
- W2229387242 countsByYear W22293872422020 @default.
- W2229387242 countsByYear W22293872422021 @default.
- W2229387242 countsByYear W22293872422022 @default.
- W2229387242 countsByYear W22293872422023 @default.
- W2229387242 crossrefType "journal-article" @default.
- W2229387242 hasAuthorship W2229387242A5006419939 @default.
- W2229387242 hasAuthorship W2229387242A5022928755 @default.
- W2229387242 hasAuthorship W2229387242A5025669300 @default.
- W2229387242 hasAuthorship W2229387242A5036260775 @default.
- W2229387242 hasAuthorship W2229387242A5057957006 @default.
- W2229387242 hasBestOaLocation W22293872422 @default.
- W2229387242 hasConcept C113174947 @default.
- W2229387242 hasConcept C119857082 @default.
- W2229387242 hasConcept C124101348 @default.
- W2229387242 hasConcept C134306372 @default.
- W2229387242 hasConcept C150899416 @default.
- W2229387242 hasConcept C154945302 @default.
- W2229387242 hasConcept C159985019 @default.
- W2229387242 hasConcept C169258074 @default.
- W2229387242 hasConcept C177264268 @default.
- W2229387242 hasConcept C192562407 @default.
- W2229387242 hasConcept C199360897 @default.
- W2229387242 hasConcept C204323151 @default.
- W2229387242 hasConcept C33923547 @default.
- W2229387242 hasConcept C36503486 @default.
- W2229387242 hasConcept C41008148 @default.
- W2229387242 hasConcept C45942800 @default.