Matches in SemOpenAlex for { <https://semopenalex.org/work/W2232189178> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2232189178 abstract "Recently, Timotheou has formulated the learning problem of the random neural network (RNN) into a convex non-negative least-square problem that can be solved to optimality. By incorporating this work of problem formulation and the line-search technique, this paper designs a line-search aided non-negative least-square (LNNLS) learning algorithm for the RNN, which is able to find a nearly optimal solution efficiently. (The source code is available at www.yonghuayin.icoc.cc.) Numerical experiments based on datasets with different dimensions have been conducted to demonstrate the efficacy of the LNNLS learning algorithm." @default.
- W2232189178 created "2016-06-24" @default.
- W2232189178 creator A5035643040 @default.
- W2232189178 date "2015-08-04" @default.
- W2232189178 modified "2023-09-26" @default.
- W2232189178 title "Line-Search Aided Non-negative Least-Square Learning for Random Neural Network" @default.
- W2232189178 cites W1504144860 @default.
- W2232189178 cites W1508677314 @default.
- W2232189178 cites W1986294906 @default.
- W2232189178 cites W1996503769 @default.
- W2232189178 cites W2008095228 @default.
- W2232189178 cites W2038297639 @default.
- W2232189178 cites W2062239025 @default.
- W2232189178 cites W2085506739 @default.
- W2232189178 cites W2110096996 @default.
- W2232189178 cites W2127322469 @default.
- W2232189178 cites W2147292097 @default.
- W2232189178 cites W4254421646 @default.
- W2232189178 doi "https://doi.org/10.1007/978-3-319-22635-4_16" @default.
- W2232189178 hasPublicationYear "2015" @default.
- W2232189178 type Work @default.
- W2232189178 sameAs 2232189178 @default.
- W2232189178 citedByCount "1" @default.
- W2232189178 countsByYear W22321891782017 @default.
- W2232189178 crossrefType "book-chapter" @default.
- W2232189178 hasAuthorship W2232189178A5035643040 @default.
- W2232189178 hasConcept C112680207 @default.
- W2232189178 hasConcept C11413529 @default.
- W2232189178 hasConcept C126255220 @default.
- W2232189178 hasConcept C126661757 @default.
- W2232189178 hasConcept C135692309 @default.
- W2232189178 hasConcept C147168706 @default.
- W2232189178 hasConcept C154945302 @default.
- W2232189178 hasConcept C177264268 @default.
- W2232189178 hasConcept C198352243 @default.
- W2232189178 hasConcept C199360897 @default.
- W2232189178 hasConcept C2524010 @default.
- W2232189178 hasConcept C2776760102 @default.
- W2232189178 hasConcept C33923547 @default.
- W2232189178 hasConcept C41008148 @default.
- W2232189178 hasConcept C50644808 @default.
- W2232189178 hasConceptScore W2232189178C112680207 @default.
- W2232189178 hasConceptScore W2232189178C11413529 @default.
- W2232189178 hasConceptScore W2232189178C126255220 @default.
- W2232189178 hasConceptScore W2232189178C126661757 @default.
- W2232189178 hasConceptScore W2232189178C135692309 @default.
- W2232189178 hasConceptScore W2232189178C147168706 @default.
- W2232189178 hasConceptScore W2232189178C154945302 @default.
- W2232189178 hasConceptScore W2232189178C177264268 @default.
- W2232189178 hasConceptScore W2232189178C198352243 @default.
- W2232189178 hasConceptScore W2232189178C199360897 @default.
- W2232189178 hasConceptScore W2232189178C2524010 @default.
- W2232189178 hasConceptScore W2232189178C2776760102 @default.
- W2232189178 hasConceptScore W2232189178C33923547 @default.
- W2232189178 hasConceptScore W2232189178C41008148 @default.
- W2232189178 hasConceptScore W2232189178C50644808 @default.
- W2232189178 hasLocation W22321891781 @default.
- W2232189178 hasOpenAccess W2232189178 @default.
- W2232189178 hasPrimaryLocation W22321891781 @default.
- W2232189178 hasRelatedWork W1505505916 @default.
- W2232189178 hasRelatedWork W1508677314 @default.
- W2232189178 hasRelatedWork W1643510495 @default.
- W2232189178 hasRelatedWork W1991751388 @default.
- W2232189178 hasRelatedWork W2012685804 @default.
- W2232189178 hasRelatedWork W2027867903 @default.
- W2232189178 hasRelatedWork W2033623106 @default.
- W2232189178 hasRelatedWork W2039333275 @default.
- W2232189178 hasRelatedWork W2059706505 @default.
- W2232189178 hasRelatedWork W2082676519 @default.
- W2232189178 hasRelatedWork W2107035564 @default.
- W2232189178 hasRelatedWork W2116049147 @default.
- W2232189178 hasRelatedWork W2120769878 @default.
- W2232189178 hasRelatedWork W2141281077 @default.
- W2232189178 hasRelatedWork W2147292097 @default.
- W2232189178 hasRelatedWork W2149806437 @default.
- W2232189178 hasRelatedWork W2156581516 @default.
- W2232189178 hasRelatedWork W2185859081 @default.
- W2232189178 hasRelatedWork W2354661728 @default.
- W2232189178 hasRelatedWork W2946355836 @default.
- W2232189178 isParatext "false" @default.
- W2232189178 isRetracted "false" @default.
- W2232189178 magId "2232189178" @default.
- W2232189178 workType "book-chapter" @default.