Matches in SemOpenAlex for { <https://semopenalex.org/work/W2232803809> ?p ?o ?g. }
- W2232803809 endingPage "4438" @default.
- W2232803809 startingPage "4409" @default.
- W2232803809 abstract "Abstract. Evapotranspiration (ET) plays an important role in surface–atmosphere interactions and can be monitored using remote sensing data. However, surface heterogeneity, including the inhomogeneity of landscapes and surface variables, significantly affects the accuracy of ET estimated from satellite data. The objective of this study is to assess and reduce the uncertainties resulting from surface heterogeneity in remotely sensed ET using Chinese HJ-1B satellite data, which is of 30 m spatial resolution in VIS/NIR bands and 300 m spatial resolution in the thermal-infrared (TIR) band. A temperature-sharpening and flux aggregation scheme (TSFA) was developed to obtain accurate heat fluxes from the HJ-1B satellite data. The IPUS (input parameter upscaling) and TRFA (temperature resampling and flux aggregation) methods were used to compare with the TSFA in this study. The three methods represent three typical schemes used to handle mixed pixels from the simplest to the most complex. IPUS handles all surface variables at coarse resolution of 300 m in this study, TSFA handles them at 30 m resolution, and TRFA handles them at 30 and 300 m resolution, which depends on the actual spatial resolution. Analyzing and comparing the three methods can help us to get a better understanding of spatial-scale errors in remote sensing of surface heat fluxes. In situ data collected during HiWATER-MUSOEXE (Multi-Scale Observation Experiment on Evapotranspiration over heterogeneous land surfaces of the Heihe Watershed Allied Telemetry Experimental Research) were used to validate and analyze the methods. ET estimated by TSFA exhibited the best agreement with in situ observations, and the footprint validation results showed that the R2, MBE, and RMSE values of the sensible heat flux (H) were 0.61, 0.90, and 50.99 W m−2, respectively, and those for the latent heat flux (LE) were 0.82, −20.54, and 71.24 W m−2, respectively. IPUS yielded the largest errors in ET estimation. The RMSE of LE between the TSFA and IPUS methods was 51.30 W m−2, and the RMSE of LE between the TSFA and TRFA methods was 16.48 W m−2. Furthermore, additional analysis showed that the TSFA method can capture the subpixel variations of land surface temperature and the influences of various landscapes within mixed pixels." @default.
- W2232803809 created "2016-06-24" @default.
- W2232803809 creator A5009115319 @default.
- W2232803809 creator A5012720551 @default.
- W2232803809 creator A5018009227 @default.
- W2232803809 creator A5028059010 @default.
- W2232803809 creator A5075497972 @default.
- W2232803809 date "2016-11-02" @default.
- W2232803809 modified "2023-10-16" @default.
- W2232803809 title "Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels" @default.
- W2232803809 cites W1480975298 @default.
- W2232803809 cites W1483093516 @default.
- W2232803809 cites W1490845441 @default.
- W2232803809 cites W1519613664 @default.
- W2232803809 cites W1560372614 @default.
- W2232803809 cites W1604999394 @default.
- W2232803809 cites W1657306314 @default.
- W2232803809 cites W1957473253 @default.
- W2232803809 cites W1964448362 @default.
- W2232803809 cites W1968508976 @default.
- W2232803809 cites W1969801270 @default.
- W2232803809 cites W1969906009 @default.
- W2232803809 cites W1970030894 @default.
- W2232803809 cites W1974235146 @default.
- W2232803809 cites W1975768883 @default.
- W2232803809 cites W1977006790 @default.
- W2232803809 cites W1980320347 @default.
- W2232803809 cites W1980802669 @default.
- W2232803809 cites W1981072855 @default.
- W2232803809 cites W1981271496 @default.
- W2232803809 cites W1982870147 @default.
- W2232803809 cites W1982981396 @default.
- W2232803809 cites W1984558703 @default.
- W2232803809 cites W1993087833 @default.
- W2232803809 cites W1993375468 @default.
- W2232803809 cites W1995103915 @default.
- W2232803809 cites W1996379139 @default.
- W2232803809 cites W2013239809 @default.
- W2232803809 cites W2014630223 @default.
- W2232803809 cites W2016044589 @default.
- W2232803809 cites W2018044115 @default.
- W2232803809 cites W2018318189 @default.
- W2232803809 cites W2026337749 @default.
- W2232803809 cites W2028535479 @default.
- W2232803809 cites W2032571483 @default.
- W2232803809 cites W2038154233 @default.
- W2232803809 cites W2045762106 @default.
- W2232803809 cites W2046869778 @default.
- W2232803809 cites W2048995275 @default.
- W2232803809 cites W2049937329 @default.
- W2232803809 cites W2052069508 @default.
- W2232803809 cites W2056784617 @default.
- W2232803809 cites W2061003790 @default.
- W2232803809 cites W2061630568 @default.
- W2232803809 cites W2063881766 @default.
- W2232803809 cites W2078426240 @default.
- W2232803809 cites W2078478034 @default.
- W2232803809 cites W2078595739 @default.
- W2232803809 cites W2081276204 @default.
- W2232803809 cites W2083698171 @default.
- W2232803809 cites W2085243105 @default.
- W2232803809 cites W2086756300 @default.
- W2232803809 cites W2086975319 @default.
- W2232803809 cites W2087474353 @default.
- W2232803809 cites W2090662578 @default.
- W2232803809 cites W2091751337 @default.
- W2232803809 cites W2093626378 @default.
- W2232803809 cites W2095029195 @default.
- W2232803809 cites W2103678896 @default.
- W2232803809 cites W2118472849 @default.
- W2232803809 cites W2123470364 @default.
- W2232803809 cites W2123720514 @default.
- W2232803809 cites W2126349297 @default.
- W2232803809 cites W2129859781 @default.
- W2232803809 cites W2130031595 @default.
- W2232803809 cites W2130797201 @default.
- W2232803809 cites W2132009606 @default.
- W2232803809 cites W2137814758 @default.
- W2232803809 cites W2139561319 @default.
- W2232803809 cites W2144058555 @default.
- W2232803809 cites W2147611675 @default.
- W2232803809 cites W2150067047 @default.
- W2232803809 cites W2154390958 @default.
- W2232803809 cites W2160709101 @default.
- W2232803809 cites W2166393047 @default.
- W2232803809 cites W2166897060 @default.
- W2232803809 cites W2168255157 @default.
- W2232803809 cites W2170461626 @default.
- W2232803809 cites W2190663818 @default.
- W2232803809 cites W2240851857 @default.
- W2232803809 cites W2271830638 @default.
- W2232803809 cites W2342095398 @default.
- W2232803809 cites W4385180534 @default.
- W2232803809 cites W4385440797 @default.
- W2232803809 doi "https://doi.org/10.5194/hess-20-4409-2016" @default.
- W2232803809 hasPublicationYear "2016" @default.
- W2232803809 type Work @default.
- W2232803809 sameAs 2232803809 @default.