Matches in SemOpenAlex for { <https://semopenalex.org/work/W2233815087> ?p ?o ?g. }
- W2233815087 endingPage "203" @default.
- W2233815087 startingPage "190" @default.
- W2233815087 abstract "Information on the ecological traits of species might improve predictions of climate-driven range shifts. However, the usefulness of traits is usually assumed rather than quantified. Here, we present a framework to identify the most informative traits, based on four key range-shift processes: emigration of individuals or propagules away from the natal location; the distance a species can move; establishment of self-sustaining populations; and proliferation following establishment. We propose a framework that categorises traits according to their contribution to range-shift processes. We demonstrate how the framework enables the predictive value of traits to be evaluated empirically and how this categorisation can be used to better understand range-shift processes; we also illustrate how range-shift estimates can be improved. Information on the ecological traits of species might improve predictions of climate-driven range shifts. However, the usefulness of traits is usually assumed rather than quantified. Here, we present a framework to identify the most informative traits, based on four key range-shift processes: emigration of individuals or propagules away from the natal location; the distance a species can move; establishment of self-sustaining populations; and proliferation following establishment. We propose a framework that categorises traits according to their contribution to range-shift processes. We demonstrate how the framework enables the predictive value of traits to be evaluated empirically and how this categorisation can be used to better understand range-shift processes; we also illustrate how range-shift estimates can be improved. The ecological traits of species are increasingly used to inform predictions of climate-driven range shifts. Traits utilised should correspond to range-shift processes: emigration, movement, establishment, and proliferation. We categorise traits according to the information that they offer for each process. The most informative traits can be informed by biogeographical and demographic evidence bases: species range sizes, range filling, recent range shifts, population fluctuations, and success following naturalisation. Movement traits are often used in range-shift studies, although their importance is not universally supported. Ecological generalisation, persistence in unfavourable conditions, reproductive strategy, and intraspecific competitive ability should be considered for inclusion in range-shift evaluations. The ecological traits of species are increasingly used to inform predictions of climate-driven range shifts. Traits utilised should correspond to range-shift processes: emigration, movement, establishment, and proliferation. We categorise traits according to the information that they offer for each process. The most informative traits can be informed by biogeographical and demographic evidence bases: species range sizes, range filling, recent range shifts, population fluctuations, and success following naturalisation. Movement traits are often used in range-shift studies, although their importance is not universally supported. Ecological generalisation, persistence in unfavourable conditions, reproductive strategy, and intraspecific competitive ability should be considered for inclusion in range-shift evaluations. the geographic area that is occupied by a species [48Gaston K.J. Fuller R.A. The sizes of species’ geographic ranges.J. Appl. Ecol. 2009; 46: 1-9Crossref Scopus (368) Google Scholar], often defined as the number of occupied grid cells (which vary in size between atlases) [20Estrada A. et al.Species’ intrinsic traits inform their range limitations and vulnerability under environmental change.Global Ecol. Biogeogr. 2015; 24: 849-858Crossref Scopus (60) Google Scholar]. the ability of an individual of one species to reduce the availability of contested resources to an individual from another species, and to tolerate or avoid reduction in contested resource availability by an individual from another species [49Aarssen L. On the distinction between niche and competitive ability: Implications for coexistence theory.Acta Biotheor. 1984; 33: 67-83Crossref Scopus (18) Google Scholar]. the ability to use a variety of a given resource type; for example, ecological generalists could breed in a variety of land-cover types, have a broad diet, or tolerate a broad range of soil types. first range-shift process in which an individual embarks on a journey (movement) outside its natal location. range-shift process following movement, in which one or more individuals reproduce and found a self-sustaining population. the area within the outer limits of the geographic distribution of a species [43Van der Veken S. et al.Life-history traits are correlated with geographical distribution patterns of western European forest herb species.J. Biogeogr. 2007; 34: 1723-1735Crossref Scopus (51) Google Scholar, 48Gaston K.J. Fuller R.A. The sizes of species’ geographic ranges.J. Appl. Ecol. 2009; 46: 1-9Crossref Scopus (368) Google Scholar]. characteristics of a species related to environmental tolerance, habitat specialisation, geographical boundaries, or spatial distribution [5Triviño M. et al.Risk assessment for Iberian birds under global change.Biol. Conserv. 2013; 168: 192-200Crossref Scopus (26) Google Scholar, 7Pearson R. et al.Life history and spatial traits predict extinction risk due to climate change.Nat. Clim. Change. 2014; 4: 217-221Crossref Scopus (282) Google Scholar, 50Bartomeus I. et al.Historical changes in northeastern US bee pollinators related to shared ecological traits.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 4656-4660Crossref PubMed Scopus (351) Google Scholar]. These traits can be measured at the individual or population level and, therefore, are not life-history traits in the strict sense. morphological, physiological, or phenological characteristics measurable at the individual level that have an effect on individual performance [51Violle C. et al.Let the concept of trait be functional!.Oikos. 2007; 116: 882-892Crossref Scopus (2829) Google Scholar]. ability of an individual or propagule to travel outside its natal location. This ability is often represented as the average or upper end of the distance moved in the lifetime of an individual or propagule. Note that this can be informed by, but is not restricted to, natal dispersal distances (movement from natal to breeding site). We specifically use ‘movement ability’ instead of ‘dispersal ability’ to avoid confusion, because the latter is widely used to include emigration, movement, and establishment [52Travis J.M.J. et al.Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved.Methods Ecol. Evol. 2012; 3: 628-641Crossref Scopus (124) Google Scholar]. The movement process in dispersal has also been called transience, transport, and transfer [52Travis J.M.J. et al.Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved.Methods Ecol. Evol. 2012; 3: 628-641Crossref Scopus (124) Google Scholar]. the capacity of a population to survive during periods in which poor climate conditions leads to zero or negative population growth rate. Unfavourability could occur through climate change directly, or as a result of climatically induced changes in other elements of habitat suitability. the geographic area in which environmental conditions are suitable for a given species, regardless of whether the species is present. Potential range is often calculated using SDMs. we define predictive traits as any feature of a species that can be used to predict (i) the likelihood and extent of range shift given exposure to climate change, or (ii) the interactions of the species with other species and nonclimatic elements of the environment, which directly or indirectly affect range shifts. Predictive traits might include ‘intrinsic’ ecophysiological, life-history, and demographic traits [51Violle C. et al.Let the concept of trait be functional!.Oikos. 2007; 116: 882-892Crossref Scopus (2829) Google Scholar], as well as broader, nonorganismal ‘indicative’ traits, such as habitat requirements or spatial distribution [5Triviño M. et al.Risk assessment for Iberian birds under global change.Biol. Conserv. 2013; 168: 192-200Crossref Scopus (26) Google Scholar, 7Pearson R. et al.Life history and spatial traits predict extinction risk due to climate change.Nat. Clim. Change. 2014; 4: 217-221Crossref Scopus (282) Google Scholar, 11Angert A.L. et al.Do species’ traits predict recent shifts at expanding range edges?.Ecol. Lett. 2011; 14: 677-689Crossref PubMed Scopus (399) Google Scholar]. fourth range-shift process in which established populations become more than self-sustaining, producing individuals that in turn disperse and cause further population spread. the proportion of its potential range that a species occupies. expansion of one part of the range margin following colonisation events. Range shift may or may not be accompanied by a contraction in another part of the range margin. the number, timing, and degree of investment in each reproductive event, which are related to demography, fecundity, and speed of life history. Species with an ‘r’ strategy reproduce early, have small body mass, and many offspring per year. Species with a ‘K’ strategy are older at first reproduction, have larger body mass, and fewer offspring. reflects the likelihood that an individual will embark on a dispersal event to emigrate away from the natal patch. High site fidelity corresponds to a low likelihood of emigration and, thus, low range-shift capacity. Therefore, we use ‘site (in)fidelity’ in line with the other six trait categories, for which the terms correspond to a positive effect on range-shift capacity. factors that make it difficult for small populations to grow and, thus, hinder population establishment. These include Allee effects, genetic drift, and susceptibility to demographic or environmental stochasticity. relates the distribution of a species with the environmental conditions in which it is found, to calculate environmentally suitable areas for that species." @default.
- W2233815087 created "2016-06-24" @default.
- W2233815087 creator A5016006649 @default.
- W2233815087 creator A5044466215 @default.
- W2233815087 creator A5054903484 @default.
- W2233815087 creator A5084818371 @default.
- W2233815087 date "2016-03-01" @default.
- W2233815087 modified "2023-10-16" @default.
- W2233815087 title "Usefulness of Species Traits in Predicting Range Shifts" @default.
- W2233815087 cites W1505278245 @default.
- W2233815087 cites W1512870236 @default.
- W2233815087 cites W1513190570 @default.
- W2233815087 cites W1513426400 @default.
- W2233815087 cites W1566636584 @default.
- W2233815087 cites W1734615271 @default.
- W2233815087 cites W1791603806 @default.
- W2233815087 cites W1862345109 @default.
- W2233815087 cites W1871178261 @default.
- W2233815087 cites W1892423229 @default.
- W2233815087 cites W1970695225 @default.
- W2233815087 cites W1972775264 @default.
- W2233815087 cites W1975136698 @default.
- W2233815087 cites W1976442755 @default.
- W2233815087 cites W1977349887 @default.
- W2233815087 cites W1979729367 @default.
- W2233815087 cites W1981621127 @default.
- W2233815087 cites W1986837069 @default.
- W2233815087 cites W1999219029 @default.
- W2233815087 cites W2008691250 @default.
- W2233815087 cites W2009228406 @default.
- W2233815087 cites W2011782516 @default.
- W2233815087 cites W2020974142 @default.
- W2233815087 cites W2023012370 @default.
- W2233815087 cites W2023228494 @default.
- W2233815087 cites W2025992337 @default.
- W2233815087 cites W2030526461 @default.
- W2233815087 cites W2034313518 @default.
- W2233815087 cites W2036043756 @default.
- W2233815087 cites W2043614666 @default.
- W2233815087 cites W2045352561 @default.
- W2233815087 cites W2047107812 @default.
- W2233815087 cites W2050988909 @default.
- W2233815087 cites W2055424972 @default.
- W2233815087 cites W2058208556 @default.
- W2233815087 cites W2062654191 @default.
- W2233815087 cites W2063040768 @default.
- W2233815087 cites W2064071430 @default.
- W2233815087 cites W2067445791 @default.
- W2233815087 cites W2070434082 @default.
- W2233815087 cites W2074822895 @default.
- W2233815087 cites W2076999350 @default.
- W2233815087 cites W2079587438 @default.
- W2233815087 cites W2084466328 @default.
- W2233815087 cites W2091918069 @default.
- W2233815087 cites W2101280078 @default.
- W2233815087 cites W2101686192 @default.
- W2233815087 cites W2103611386 @default.
- W2233815087 cites W2106820566 @default.
- W2233815087 cites W2107048633 @default.
- W2233815087 cites W2113487278 @default.
- W2233815087 cites W2114583927 @default.
- W2233815087 cites W2121561093 @default.
- W2233815087 cites W2122745924 @default.
- W2233815087 cites W2123379596 @default.
- W2233815087 cites W2124328127 @default.
- W2233815087 cites W2128337086 @default.
- W2233815087 cites W2129869242 @default.
- W2233815087 cites W2130106276 @default.
- W2233815087 cites W2130928131 @default.
- W2233815087 cites W2132441771 @default.
- W2233815087 cites W2142097792 @default.
- W2233815087 cites W2142860390 @default.
- W2233815087 cites W2145953408 @default.
- W2233815087 cites W2155546107 @default.
- W2233815087 cites W2162911488 @default.
- W2233815087 cites W2163137281 @default.
- W2233815087 cites W2164623187 @default.
- W2233815087 cites W2164793538 @default.
- W2233815087 cites W2166104505 @default.
- W2233815087 cites W2168471629 @default.
- W2233815087 cites W2168814022 @default.
- W2233815087 cites W2170459828 @default.
- W2233815087 cites W2180032649 @default.
- W2233815087 cites W2952169165 @default.
- W2233815087 doi "https://doi.org/10.1016/j.tree.2015.12.014" @default.
- W2233815087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26776962" @default.
- W2233815087 hasPublicationYear "2016" @default.
- W2233815087 type Work @default.
- W2233815087 sameAs 2233815087 @default.
- W2233815087 citedByCount "133" @default.
- W2233815087 countsByYear W22338150872016 @default.
- W2233815087 countsByYear W22338150872017 @default.
- W2233815087 countsByYear W22338150872018 @default.
- W2233815087 countsByYear W22338150872019 @default.
- W2233815087 countsByYear W22338150872020 @default.
- W2233815087 countsByYear W22338150872021 @default.
- W2233815087 countsByYear W22338150872022 @default.
- W2233815087 countsByYear W22338150872023 @default.