Matches in SemOpenAlex for { <https://semopenalex.org/work/W2234378520> ?p ?o ?g. }
- W2234378520 abstract "The main theme of this thesis is load-balancing in large sparse random graphs. In the computer science context, a load-balancing problem occurs when we have a set of tasks which need to be distributed across multiple resources, and to resolve the load-balancing problem one needs to specify which tasks are going to be handled by which resources. Depending on the context, tasks and resources may have different interpretations. To make things more concrete, we focus in this document on two particular applications: - a multiple-choice hashing system (often refered to as cuckoo hashing in the literature), where the goal is to efficiently assign buckets to items so that the items or any associated data can be stored to be later retrieved quickly. Tasks are here linked to items, and resources to buckets. - a content delivery network (CDN) with a multitude of servers to handle storage and service of the contents. In this context, tasks are requests for a particular content and resources are linked with the servers and the particular contents they store, and resolving the load-balancing problem means assigning servers to requests. The local constraints of which resource is suitable for a particular task as well as the initial amounts of the different available resources and the workload associated with each task can be efficiently represented as a capacitated bipartite graph. Also, in practice and in particular for the two examples mentioned, the systems considered are often of very large size, involving maybe thousands of different tasks and resources, and they tend to be quite random (either by design or due to a lack of coordination capabilities). Therefore, the context of large random graphs is particularly well-suited to the considered evaluations. As the spectrum of solutions to a particular load-balancing problem is vast, it is primordial to understand the performance of the optimal solution to the loadbalancing problem (disregarding its potential complexity) in order to assess the relative efficiency of any given candidate scheme. This optimal load-balancing performance can be derived from the size of maximum capacitated matchings in a large sparse random graph. We analyze this quantity using the cavity method -a powerful tool coming from the study of disordered systems in statistical physics-, showing in the process how to rigorously apply this method to the setups of interest for our work. Coming back to the cuckoo hashing example, we obtain the load thresholds under which cuckoo hashing succeeds with high probability in building a valid hashtable and further show that the same approach can handle other related schemes. In the distributed CDN context, the performance of load-balancing is not the end of the story, as an associated resource-placement problem naturally arises: in such a system, one can choose how to provision resources and how to pool them, i.e., how to replicate contents over the servers. Our study of capacitated matchings already yields the efficiency of static replications of contents under optimal load-balancing, and we further obtain the limits of the optimal replication when the storage capacity of servers increases. Finally, as optimal load-balancing may be too complex for many realistic distributed CDN systems, we address the issues of load-balancing performance and resource-placement optimization under a much simpler -random greedy- load-balancing scheme using mean-field large storage approximations. We also design efficient adaptive replication algorithms for this setup." @default.
- W2234378520 created "2016-06-24" @default.
- W2234378520 creator A5015149788 @default.
- W2234378520 date "2013-12-18" @default.
- W2234378520 modified "2023-09-25" @default.
- W2234378520 title "Load-balancing and resource-provisioning in large distributed systems" @default.
- W2234378520 cites W1486246422 @default.
- W2234378520 cites W1504317671 @default.
- W2234378520 cites W1508957056 @default.
- W2234378520 cites W1513903516 @default.
- W2234378520 cites W1515667149 @default.
- W2234378520 cites W1518885151 @default.
- W2234378520 cites W1528625750 @default.
- W2234378520 cites W158955491 @default.
- W2234378520 cites W1622584740 @default.
- W2234378520 cites W1631195315 @default.
- W2234378520 cites W1678178911 @default.
- W2234378520 cites W1767800602 @default.
- W2234378520 cites W182704713 @default.
- W2234378520 cites W1843297212 @default.
- W2234378520 cites W1854875838 @default.
- W2234378520 cites W1872905819 @default.
- W2234378520 cites W1975489664 @default.
- W2234378520 cites W1980005054 @default.
- W2234378520 cites W1985376099 @default.
- W2234378520 cites W1991832118 @default.
- W2234378520 cites W1993433103 @default.
- W2234378520 cites W1995038282 @default.
- W2234378520 cites W1997525214 @default.
- W2234378520 cites W1997698259 @default.
- W2234378520 cites W2004724832 @default.
- W2234378520 cites W2005633226 @default.
- W2234378520 cites W2008159222 @default.
- W2234378520 cites W2010309395 @default.
- W2234378520 cites W2013024470 @default.
- W2234378520 cites W2014229870 @default.
- W2234378520 cites W2016635557 @default.
- W2234378520 cites W2017186918 @default.
- W2234378520 cites W2018511687 @default.
- W2234378520 cites W2022083710 @default.
- W2234378520 cites W2030616523 @default.
- W2234378520 cites W2033718639 @default.
- W2234378520 cites W2046560739 @default.
- W2234378520 cites W2047251584 @default.
- W2234378520 cites W2049807504 @default.
- W2234378520 cites W2052719937 @default.
- W2234378520 cites W2055754268 @default.
- W2234378520 cites W2060019200 @default.
- W2234378520 cites W2060656154 @default.
- W2234378520 cites W2061309095 @default.
- W2234378520 cites W2064561122 @default.
- W2234378520 cites W2068871408 @default.
- W2234378520 cites W2071824433 @default.
- W2234378520 cites W2080908560 @default.
- W2234378520 cites W2083750870 @default.
- W2234378520 cites W2087048793 @default.
- W2234378520 cites W2089040526 @default.
- W2234378520 cites W2091323212 @default.
- W2234378520 cites W2091476183 @default.
- W2234378520 cites W2095198692 @default.
- W2234378520 cites W2100135279 @default.
- W2234378520 cites W2100834185 @default.
- W2234378520 cites W2103985627 @default.
- W2234378520 cites W2105185344 @default.
- W2234378520 cites W2105546154 @default.
- W2234378520 cites W2110596924 @default.
- W2234378520 cites W2115184543 @default.
- W2234378520 cites W2117197324 @default.
- W2234378520 cites W2118696796 @default.
- W2234378520 cites W2119276484 @default.
- W2234378520 cites W2119755982 @default.
- W2234378520 cites W2128765501 @default.
- W2234378520 cites W2129355511 @default.
- W2234378520 cites W2132565565 @default.
- W2234378520 cites W2134995722 @default.
- W2234378520 cites W2142785003 @default.
- W2234378520 cites W2146336632 @default.
- W2234378520 cites W2149721632 @default.
- W2234378520 cites W2150495639 @default.
- W2234378520 cites W2154805110 @default.
- W2234378520 cites W2156094048 @default.
- W2234378520 cites W2156588926 @default.
- W2234378520 cites W2157090970 @default.
- W2234378520 cites W2158122241 @default.
- W2234378520 cites W2159080219 @default.
- W2234378520 cites W2163364417 @default.
- W2234378520 cites W2165114349 @default.
- W2234378520 cites W2166542473 @default.
- W2234378520 cites W2168290833 @default.
- W2234378520 cites W2169415915 @default.
- W2234378520 cites W2169732368 @default.
- W2234378520 cites W2249831108 @default.
- W2234378520 cites W2290127356 @default.
- W2234378520 cites W2317039600 @default.
- W2234378520 cites W2326180126 @default.
- W2234378520 cites W2401610261 @default.
- W2234378520 cites W2551575090 @default.
- W2234378520 cites W2566505556 @default.
- W2234378520 cites W2611804663 @default.
- W2234378520 cites W2621271919 @default.