Matches in SemOpenAlex for { <https://semopenalex.org/work/W2234761409> ?p ?o ?g. }
- W2234761409 endingPage "2512" @default.
- W2234761409 startingPage "2493" @default.
- W2234761409 abstract "A new numerical algorithm has been investigated for solving time fractional reaction–subdiffusion equation. The fractional derivative of the considered equation is described in the Riemann–Liouville sense. Firstly, we discrete the temporal dimension of the considered model using a finite difference scheme. A central difference scheme has been applied to discrete the first time derivative and then for discretizing the fractional integral term a difference scheme has been employed with convergence order O(τ1+γ). Moreover, to achieve a full discretization scheme a type of meshless method has been improved that is known as element free Galerkin (EFG) method. The EFG method for integration uses a background mesh. This method is based on the Galerkin weak form in which the test and trial functions are shape functions of moving least squares (MLS) approximation. Since the shape functions of traditional MLS lack the Kronecker δ property, essential boundary conditions of a boundary value problem can not be directly computed and other methods must be employed for this issue. To this end, a new class of MLS shape functions has been applied that is called shape functions of interpolating MLS. The new shape function has the mentioned property. In the EFG method, calculating the appeared two-dimensional integrals is a basic issue. In this research work, the alternating direction implicit approach is combined with the element free Galerkin method. Then, using the new proposed method, the two-dimensional integrals on rectangular domain will be changed to simple one-dimensional integrals. We prove that the new numerical algorithm is unconditionally stable and also we obtain an error bound for the new procedure using the energy method. Numerical examples are reported which demonstrate the theoretical results and the efficiency of proposed scheme." @default.
- W2234761409 created "2016-06-24" @default.
- W2234761409 creator A5044309986 @default.
- W2234761409 creator A5051159072 @default.
- W2234761409 date "2015-11-01" @default.
- W2234761409 modified "2023-10-11" @default.
- W2234761409 title "A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method" @default.
- W2234761409 cites W1524814552 @default.
- W2234761409 cites W1545425321 @default.
- W2234761409 cites W181700626 @default.
- W2234761409 cites W1964804260 @default.
- W2234761409 cites W1965266992 @default.
- W2234761409 cites W1969997218 @default.
- W2234761409 cites W1970546830 @default.
- W2234761409 cites W1971836119 @default.
- W2234761409 cites W1973142736 @default.
- W2234761409 cites W1975383112 @default.
- W2234761409 cites W1975670568 @default.
- W2234761409 cites W1976571953 @default.
- W2234761409 cites W1977360274 @default.
- W2234761409 cites W1977696410 @default.
- W2234761409 cites W1978016723 @default.
- W2234761409 cites W1981956153 @default.
- W2234761409 cites W1983159263 @default.
- W2234761409 cites W1984091802 @default.
- W2234761409 cites W1988744163 @default.
- W2234761409 cites W1991019635 @default.
- W2234761409 cites W1992526128 @default.
- W2234761409 cites W1995597760 @default.
- W2234761409 cites W1998941030 @default.
- W2234761409 cites W2003437637 @default.
- W2234761409 cites W2003679356 @default.
- W2234761409 cites W2004197282 @default.
- W2234761409 cites W2006338052 @default.
- W2234761409 cites W2013344519 @default.
- W2234761409 cites W2014666630 @default.
- W2234761409 cites W2022650346 @default.
- W2234761409 cites W2031171824 @default.
- W2234761409 cites W2032495860 @default.
- W2234761409 cites W2038588076 @default.
- W2234761409 cites W2038588805 @default.
- W2234761409 cites W2042423166 @default.
- W2234761409 cites W2042861208 @default.
- W2234761409 cites W2043080303 @default.
- W2234761409 cites W2045812925 @default.
- W2234761409 cites W2047229112 @default.
- W2234761409 cites W2049783130 @default.
- W2234761409 cites W2052129902 @default.
- W2234761409 cites W2055701161 @default.
- W2234761409 cites W2059607966 @default.
- W2234761409 cites W2062807261 @default.
- W2234761409 cites W2063780366 @default.
- W2234761409 cites W2064641940 @default.
- W2234761409 cites W2066200077 @default.
- W2234761409 cites W2067855936 @default.
- W2234761409 cites W2068019963 @default.
- W2234761409 cites W2079698918 @default.
- W2234761409 cites W2080798379 @default.
- W2234761409 cites W2084024141 @default.
- W2234761409 cites W2086458850 @default.
- W2234761409 cites W2087946410 @default.
- W2234761409 cites W2094384405 @default.
- W2234761409 cites W2101121254 @default.
- W2234761409 cites W2106704185 @default.
- W2234761409 cites W2113779080 @default.
- W2234761409 cites W2119671522 @default.
- W2234761409 cites W2119838320 @default.
- W2234761409 cites W2125366357 @default.
- W2234761409 cites W2142136198 @default.
- W2234761409 cites W2146926644 @default.
- W2234761409 cites W2149761259 @default.
- W2234761409 cites W2152727585 @default.
- W2234761409 cites W2170885741 @default.
- W2234761409 cites W4230205099 @default.
- W2234761409 cites W4243701388 @default.
- W2234761409 doi "https://doi.org/10.1016/j.camwa.2015.09.011" @default.
- W2234761409 hasPublicationYear "2015" @default.
- W2234761409 type Work @default.
- W2234761409 sameAs 2234761409 @default.
- W2234761409 citedByCount "39" @default.
- W2234761409 countsByYear W22347614092016 @default.
- W2234761409 countsByYear W22347614092017 @default.
- W2234761409 countsByYear W22347614092018 @default.
- W2234761409 countsByYear W22347614092019 @default.
- W2234761409 countsByYear W22347614092020 @default.
- W2234761409 countsByYear W22347614092021 @default.
- W2234761409 countsByYear W22347614092022 @default.
- W2234761409 countsByYear W22347614092023 @default.
- W2234761409 crossrefType "journal-article" @default.
- W2234761409 hasAuthorship W2234761409A5044309986 @default.
- W2234761409 hasAuthorship W2234761409A5051159072 @default.
- W2234761409 hasBestOaLocation W22347614091 @default.
- W2234761409 hasConcept C121332964 @default.
- W2234761409 hasConcept C134306372 @default.
- W2234761409 hasConcept C135628077 @default.
- W2234761409 hasConcept C154249771 @default.
- W2234761409 hasConcept C162835735 @default.
- W2234761409 hasConcept C182310444 @default.