Matches in SemOpenAlex for { <https://semopenalex.org/work/W2235170053> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2235170053 abstract "Peer-to-peer(P2P) computing is emerging as a new distributed computing paradigm for novel applications that involves exchange of information among peers with little centralized coordination. Analyzing data distributed in P2P networks requires peer-to-peer data mining algorithms that can mine the data without data centralization. However, replicating result of centralized data mining in an exact fashion is often communication-wise expensive. Approximate algorithms can be a realistic and communication-efficient alternative in this case. This dissertation concentrates on developing approximate data mining algorithms suitable for P2P networks, that closely estimates the result of centralized data mining algorithm with probabilistic guarantee using minimal communication. The dissertation introduces the concept of approximate local algorithms that can estimate data mining result within desired accuracy boundary with user-specified probabilistic guarantee by operating within a spatial locality of the executioner-node. As a foundation of probabilistic approximation in P2P network, a random-walk based uniform data sampling approach is proposed, that removes the bias and dependence in sampling caused by varying degrees of connectivity and sizes of data shared. Then the sampling technique is applied to develop approximate local algorithms for solving the specific data mining problem of K-means clustering and frequent itemset mining in the context of P2P network. Two K-means clustering algorithms are developed, one of which extends the concept of centralized K-means algorithm to distributed dynamic peer-to-peer environment, while the other provides probabilistic guarantee on accuracy of clustering result in a static P2P network. A frequent itemset mining algorithm is developed as a direct application of the uniform data sampling technique that discovers most of the frequent itemsets with high probability using bounded communication. The main contribution of this research work is to introduce the concept of approximate local algorithms for data mining in P2P network that provides probabilistic guarantee of accuracy. It builds a basic tool for approximate data analysis in P2P network, a uniform data sampling technique, and develops communication efficient approximate local algorithms for mining data distributed in such network. The algorithms developed here provide data mining results within desired accuracy level and probabilistic guarantee, and shows good scalability with low communication overhead." @default.
- W2235170053 created "2016-06-24" @default.
- W2235170053 creator A5001998905 @default.
- W2235170053 creator A5077303875 @default.
- W2235170053 date "2008-01-01" @default.
- W2235170053 modified "2023-09-25" @default.
- W2235170053 title "Probabilistic approximate algorithms for distributed data mining in peer-to-peer networks" @default.
- W2235170053 hasPublicationYear "2008" @default.
- W2235170053 type Work @default.
- W2235170053 sameAs 2235170053 @default.
- W2235170053 citedByCount "2" @default.
- W2235170053 countsByYear W22351700532014 @default.
- W2235170053 countsByYear W22351700532017 @default.
- W2235170053 crossrefType "journal-article" @default.
- W2235170053 hasAuthorship W2235170053A5001998905 @default.
- W2235170053 hasAuthorship W2235170053A5077303875 @default.
- W2235170053 hasConcept C11413529 @default.
- W2235170053 hasConcept C119857082 @default.
- W2235170053 hasConcept C120314980 @default.
- W2235170053 hasConcept C124101348 @default.
- W2235170053 hasConcept C127413603 @default.
- W2235170053 hasConcept C130120984 @default.
- W2235170053 hasConcept C138885662 @default.
- W2235170053 hasConcept C151730666 @default.
- W2235170053 hasConcept C154945302 @default.
- W2235170053 hasConcept C2779343474 @default.
- W2235170053 hasConcept C2779808786 @default.
- W2235170053 hasConcept C41008148 @default.
- W2235170053 hasConcept C41895202 @default.
- W2235170053 hasConcept C49937458 @default.
- W2235170053 hasConcept C534932454 @default.
- W2235170053 hasConcept C62611344 @default.
- W2235170053 hasConcept C66938386 @default.
- W2235170053 hasConcept C73555534 @default.
- W2235170053 hasConcept C86803240 @default.
- W2235170053 hasConcept C89198739 @default.
- W2235170053 hasConceptScore W2235170053C11413529 @default.
- W2235170053 hasConceptScore W2235170053C119857082 @default.
- W2235170053 hasConceptScore W2235170053C120314980 @default.
- W2235170053 hasConceptScore W2235170053C124101348 @default.
- W2235170053 hasConceptScore W2235170053C127413603 @default.
- W2235170053 hasConceptScore W2235170053C130120984 @default.
- W2235170053 hasConceptScore W2235170053C138885662 @default.
- W2235170053 hasConceptScore W2235170053C151730666 @default.
- W2235170053 hasConceptScore W2235170053C154945302 @default.
- W2235170053 hasConceptScore W2235170053C2779343474 @default.
- W2235170053 hasConceptScore W2235170053C2779808786 @default.
- W2235170053 hasConceptScore W2235170053C41008148 @default.
- W2235170053 hasConceptScore W2235170053C41895202 @default.
- W2235170053 hasConceptScore W2235170053C49937458 @default.
- W2235170053 hasConceptScore W2235170053C534932454 @default.
- W2235170053 hasConceptScore W2235170053C62611344 @default.
- W2235170053 hasConceptScore W2235170053C66938386 @default.
- W2235170053 hasConceptScore W2235170053C73555534 @default.
- W2235170053 hasConceptScore W2235170053C86803240 @default.
- W2235170053 hasConceptScore W2235170053C89198739 @default.
- W2235170053 hasLocation W22351700531 @default.
- W2235170053 hasOpenAccess W2235170053 @default.
- W2235170053 hasPrimaryLocation W22351700531 @default.
- W2235170053 hasRelatedWork W1577938523 @default.
- W2235170053 hasRelatedWork W1942867373 @default.
- W2235170053 hasRelatedWork W2012122611 @default.
- W2235170053 hasRelatedWork W2017984412 @default.
- W2235170053 hasRelatedWork W2083373207 @default.
- W2235170053 hasRelatedWork W2089237419 @default.
- W2235170053 hasRelatedWork W2095791687 @default.
- W2235170053 hasRelatedWork W2099822495 @default.
- W2235170053 hasRelatedWork W2105640518 @default.
- W2235170053 hasRelatedWork W2113984431 @default.
- W2235170053 hasRelatedWork W2130211668 @default.
- W2235170053 hasRelatedWork W2137627724 @default.
- W2235170053 hasRelatedWork W2276365374 @default.
- W2235170053 hasRelatedWork W2311782389 @default.
- W2235170053 hasRelatedWork W2559572207 @default.
- W2235170053 hasRelatedWork W2578264933 @default.
- W2235170053 hasRelatedWork W2596973447 @default.
- W2235170053 hasRelatedWork W2603410872 @default.
- W2235170053 hasRelatedWork W2932442203 @default.
- W2235170053 hasRelatedWork W96179630 @default.
- W2235170053 isParatext "false" @default.
- W2235170053 isRetracted "false" @default.
- W2235170053 magId "2235170053" @default.
- W2235170053 workType "article" @default.