Matches in SemOpenAlex for { <https://semopenalex.org/work/W2235179625> ?p ?o ?g. }
- W2235179625 abstract "Traditional signal processing systems, based on linear modeling principles, face a stifling pressure to meet present-day demands caused by the deluge of data generated, transmitted and processed across the globe. Fortunately, recent advances have resulted in the emergence of more sophisticated, nonlinear signal models. Such nonlinear models have inspired fundamental changes in which information processing systems are designed and analyzed. For example, the sparse signal model serves as the basis for Compressive Sensing (CS), an exciting new framework for signal acquisition. In this thesis, we advocate a geometry-based approach for nonlinear modeling of signal ensembles. We make the guiding assumption that the signal class of interest forms a nonlinear low-dimensional manifold belonging to the high-dimensional signal space. A host of traditional nonlinear data models can be essentially interpreted as specific instances of such manifolds. Therefore, our proposed geometric approach provides a common framework that can unify, analyze, and significantly extend the scope of nonlinear models for information acquisition and processing. We demonstrate that the geometric approach enables new algorithms and analysis for a number of signal processing applications. Our specific contributions include: (i) new convex formulations and algorithms for the design of linear systems for data acquisition, compression, and classification; (ii) a general algorithm for reconstruction, deconvolution, and denoising of signals, images, and matrix-valued data; (iii) efficient methods for inference from a small number of linear signal samples, without ever resorting to reconstruction; and, (iv) new signal and image representations for robust modeling and processing of large-scale data ensembles." @default.
- W2235179625 created "2016-06-24" @default.
- W2235179625 creator A5040854280 @default.
- W2235179625 creator A5066142047 @default.
- W2235179625 date "2012-01-01" @default.
- W2235179625 modified "2023-10-17" @default.
- W2235179625 title "Nonlinear signal models: geometry, algorithms, and analysis" @default.
- W2235179625 cites W108633999 @default.
- W2235179625 cites W1484267881 @default.
- W2235179625 cites W1485293642 @default.
- W2235179625 cites W1516111018 @default.
- W2235179625 cites W1518341038 @default.
- W2235179625 cites W1559169059 @default.
- W2235179625 cites W1566135517 @default.
- W2235179625 cites W1597120896 @default.
- W2235179625 cites W1736339626 @default.
- W2235179625 cites W1837471008 @default.
- W2235179625 cites W1966949944 @default.
- W2235179625 cites W1974973278 @default.
- W2235179625 cites W1986736933 @default.
- W2235179625 cites W1986931325 @default.
- W2235179625 cites W1992208469 @default.
- W2235179625 cites W1994154911 @default.
- W2235179625 cites W1999905919 @default.
- W2235179625 cites W2001619934 @default.
- W2235179625 cites W2003372231 @default.
- W2235179625 cites W2005102197 @default.
- W2235179625 cites W2011359124 @default.
- W2235179625 cites W2017540033 @default.
- W2235179625 cites W2026164926 @default.
- W2235179625 cites W2029401646 @default.
- W2235179625 cites W2030449718 @default.
- W2235179625 cites W2030876210 @default.
- W2235179625 cites W2037757210 @default.
- W2235179625 cites W2042316011 @default.
- W2235179625 cites W2047071281 @default.
- W2235179625 cites W2049371785 @default.
- W2235179625 cites W2051061727 @default.
- W2235179625 cites W2051434435 @default.
- W2235179625 cites W2056527335 @default.
- W2235179625 cites W2060783161 @default.
- W2235179625 cites W2062747674 @default.
- W2235179625 cites W2064257851 @default.
- W2235179625 cites W2064733273 @default.
- W2235179625 cites W2066459185 @default.
- W2235179625 cites W2067532361 @default.
- W2235179625 cites W2070047497 @default.
- W2235179625 cites W2078397124 @default.
- W2235179625 cites W2078776517 @default.
- W2235179625 cites W2078908559 @default.
- W2235179625 cites W2081385752 @default.
- W2235179625 cites W2093480133 @default.
- W2235179625 cites W2093813380 @default.
- W2235179625 cites W2095109112 @default.
- W2235179625 cites W2104978738 @default.
- W2235179625 cites W2107179775 @default.
- W2235179625 cites W2107200220 @default.
- W2235179625 cites W2110764733 @default.
- W2235179625 cites W2112545207 @default.
- W2235179625 cites W2115090644 @default.
- W2235179625 cites W2115706991 @default.
- W2235179625 cites W2116148865 @default.
- W2235179625 cites W2116402476 @default.
- W2235179625 cites W2116810533 @default.
- W2235179625 cites W2117377454 @default.
- W2235179625 cites W2117756735 @default.
- W2235179625 cites W2118550318 @default.
- W2235179625 cites W2120961178 @default.
- W2235179625 cites W2124252039 @default.
- W2235179625 cites W2125027820 @default.
- W2235179625 cites W2125772040 @default.
- W2235179625 cites W2126131432 @default.
- W2235179625 cites W2127119195 @default.
- W2235179625 cites W2127905518 @default.
- W2235179625 cites W2129319777 @default.
- W2235179625 cites W2129404737 @default.
- W2235179625 cites W2129638195 @default.
- W2235179625 cites W2131628350 @default.
- W2235179625 cites W2131846894 @default.
- W2235179625 cites W2133740040 @default.
- W2235179625 cites W2134120396 @default.
- W2235179625 cites W2134474909 @default.
- W2235179625 cites W2134692386 @default.
- W2235179625 cites W2135479785 @default.
- W2235179625 cites W2135764410 @default.
- W2235179625 cites W2136235822 @default.
- W2235179625 cites W2137825973 @default.
- W2235179625 cites W2143668817 @default.
- W2235179625 cites W2145096794 @default.
- W2235179625 cites W2145962650 @default.
- W2235179625 cites W2147276092 @default.
- W2235179625 cites W2147717514 @default.
- W2235179625 cites W2151103935 @default.
- W2235179625 cites W2156598602 @default.
- W2235179625 cites W2156838815 @default.
- W2235179625 cites W2157169955 @default.
- W2235179625 cites W2159727956 @default.
- W2235179625 cites W2160979406 @default.
- W2235179625 cites W2161374719 @default.
- W2235179625 cites W2161969291 @default.