Matches in SemOpenAlex for { <https://semopenalex.org/work/W2235891297> ?p ?o ?g. }
- W2235891297 endingPage "2132" @default.
- W2235891297 startingPage "2121" @default.
- W2235891297 abstract "With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to batch cultivations, keeping high yields for extended production times is still a challenge. Overall, we demonstrate that process intensification of cell culture-based viral vaccine production can be realized by the consequent application of fed-batch, perfusion, and continuous systems with a significant increase in productivity. The potential for even further improvements is high, considering recent developments in establishment of new (designer) cell lines, better characterization of host cell metabolism, advances in media design, and the use of mathematical models as a tool for process optimization and control." @default.
- W2235891297 created "2016-06-24" @default.
- W2235891297 creator A5014857019 @default.
- W2235891297 creator A5059222672 @default.
- W2235891297 creator A5082695733 @default.
- W2235891297 creator A5084150472 @default.
- W2235891297 date "2016-01-13" @default.
- W2235891297 modified "2023-10-12" @default.
- W2235891297 title "Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production" @default.
- W2235891297 cites W1009251650 @default.
- W2235891297 cites W106686952 @default.
- W2235891297 cites W1487506419 @default.
- W2235891297 cites W1506151812 @default.
- W2235891297 cites W1576272816 @default.
- W2235891297 cites W1595906451 @default.
- W2235891297 cites W1872541165 @default.
- W2235891297 cites W1924059436 @default.
- W2235891297 cites W1938840020 @default.
- W2235891297 cites W1968801913 @default.
- W2235891297 cites W1972945328 @default.
- W2235891297 cites W1978659446 @default.
- W2235891297 cites W1987130080 @default.
- W2235891297 cites W1988681504 @default.
- W2235891297 cites W1989490778 @default.
- W2235891297 cites W1990063265 @default.
- W2235891297 cites W1995799295 @default.
- W2235891297 cites W1995924547 @default.
- W2235891297 cites W1996059448 @default.
- W2235891297 cites W1996903617 @default.
- W2235891297 cites W2002712227 @default.
- W2235891297 cites W2003142196 @default.
- W2235891297 cites W2005911822 @default.
- W2235891297 cites W2006401683 @default.
- W2235891297 cites W2013505595 @default.
- W2235891297 cites W2020294960 @default.
- W2235891297 cites W2020405271 @default.
- W2235891297 cites W2020769254 @default.
- W2235891297 cites W2021937267 @default.
- W2235891297 cites W2026124052 @default.
- W2235891297 cites W2028677491 @default.
- W2235891297 cites W2041346792 @default.
- W2235891297 cites W2051954404 @default.
- W2235891297 cites W2056397054 @default.
- W2235891297 cites W2057457796 @default.
- W2235891297 cites W2062442452 @default.
- W2235891297 cites W2067651229 @default.
- W2235891297 cites W2074339242 @default.
- W2235891297 cites W2074838706 @default.
- W2235891297 cites W2082204585 @default.
- W2235891297 cites W2084758877 @default.
- W2235891297 cites W2086329572 @default.
- W2235891297 cites W2089772918 @default.
- W2235891297 cites W2099891847 @default.
- W2235891297 cites W2101320046 @default.
- W2235891297 cites W2109280317 @default.
- W2235891297 cites W2112637529 @default.
- W2235891297 cites W2123346883 @default.
- W2235891297 cites W2127765069 @default.
- W2235891297 cites W2131774841 @default.
- W2235891297 cites W2135445377 @default.
- W2235891297 cites W2139976232 @default.
- W2235891297 cites W2143686508 @default.
- W2235891297 cites W2145517847 @default.
- W2235891297 cites W2151753237 @default.
- W2235891297 cites W2163995104 @default.
- W2235891297 cites W2165365576 @default.
- W2235891297 cites W2279803956 @default.
- W2235891297 cites W232994572 @default.
- W2235891297 cites W2396809932 @default.
- W2235891297 cites W2470440574 @default.
- W2235891297 cites W2910137114 @default.
- W2235891297 cites W4233446758 @default.
- W2235891297 cites W4234358576 @default.
- W2235891297 cites W4242740594 @default.
- W2235891297 cites W4252428073 @default.
- W2235891297 cites W4255227112 @default.
- W2235891297 cites W872191167 @default.
- W2235891297 cites W99075088 @default.
- W2235891297 doi "https://doi.org/10.1007/s00253-015-7267-9" @default.
- W2235891297 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4756030" @default.
- W2235891297 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26758296" @default.
- W2235891297 hasPublicationYear "2016" @default.
- W2235891297 type Work @default.
- W2235891297 sameAs 2235891297 @default.
- W2235891297 citedByCount "97" @default.
- W2235891297 countsByYear W22358912972017 @default.
- W2235891297 countsByYear W22358912972018 @default.
- W2235891297 countsByYear W22358912972019 @default.
- W2235891297 countsByYear W22358912972020 @default.
- W2235891297 countsByYear W22358912972021 @default.
- W2235891297 countsByYear W22358912972022 @default.
- W2235891297 countsByYear W22358912972023 @default.
- W2235891297 crossrefType "journal-article" @default.
- W2235891297 hasAuthorship W2235891297A5014857019 @default.
- W2235891297 hasAuthorship W2235891297A5059222672 @default.
- W2235891297 hasAuthorship W2235891297A5082695733 @default.
- W2235891297 hasAuthorship W2235891297A5084150472 @default.
- W2235891297 hasBestOaLocation W22358912971 @default.