Matches in SemOpenAlex for { <https://semopenalex.org/work/W2236763896> ?p ?o ?g. }
- W2236763896 abstract "In this dissertation, a multiscale moving contact line (MMCL) theory is proposed, to simulate liquid droplet spreading, capillary motion and in particular, to study cell motility on the extracellular matrix. The proposed multiscale moving contact line theory combines a coarse-grained contact model (CGCM) with a generalized Gurtin-Murdoch surface elasticity theory, so that it can couple the molecular scale adhesive interaction with the macroscale motion. The intermolecular adhesive force (van der Waals force) separates and levitates the liquid droplet from the supporting solid substrate, such that the proposed MMCL theory can avoid the singularity problem caused by the no-slip condition in the conventional hydrodynamics of moving contact line theory.The proposed MMCL theory is formulated as a variational principle and implemented within a Lagrangian finite element method. Two different implementations with different ways of calculating the contact/adhesion forces, regarding the computational efficiency, are proposed. Numerical examples are presented to illustrate the applicability of the MMCL theory. Several simulations of complete three-dimensional water droplet spreadings upon various elastic substrates are performed. The numerical results are in good agreement with those of molecular dynamics simulations and experiments reported in literature. In addition, the capillary motion around a spherical cap is captured using the MMCL theory. The contact model (CGCM) used in the MMCL theory is initially designed to simulate contact and adhesion at nano or submicro scale. By using a second level coarse graining technique, it can be employed to simulate problems at meso or even macro scales and thus make the MMCL theory available to simulations of cell motility, which is usually at a scale ranging from ten micrometer to several millimeter. At last, the MMCL theory is used to study the interactions between cells and their extracellular matrices. In our framework, a cell is modeled as Nematic liquid crystal or liquid crystal elatomer and the extracellular matrix is treated as an elastic substrate. Cell spreading upon various extracellular substrates are successfully simulated, aiming to improve the understanding of the mechanotransduction mechanism that is in charge of mechanical information exchange between a cell and its surrounding environment. Through the numerical simulations, it is demonstrated that the cell can sense the substrate elasticity in many different ways. In fact, together with a proposed scheme that resembles a linkage between the traction forces and cell substrate elasticity based on experimental observations, self-propelled movement of a cell on the gradient of substrate elasticity (called durotaxis) is successfully captured." @default.
- W2236763896 created "2016-06-24" @default.
- W2236763896 creator A5086555995 @default.
- W2236763896 date "2014-01-01" @default.
- W2236763896 modified "2023-09-27" @default.
- W2236763896 title "A multiscale moving contact line theory and its applications on the simulations of dynamic droplet wetting and cell motility on soft substrates" @default.
- W2236763896 cites W1519295492 @default.
- W2236763896 cites W1965922317 @default.
- W2236763896 cites W1969272374 @default.
- W2236763896 cites W1978624559 @default.
- W2236763896 cites W1990953263 @default.
- W2236763896 cites W1992090545 @default.
- W2236763896 cites W1992899755 @default.
- W2236763896 cites W1995507233 @default.
- W2236763896 cites W1998063139 @default.
- W2236763896 cites W1999909353 @default.
- W2236763896 cites W2000738274 @default.
- W2236763896 cites W2000794416 @default.
- W2236763896 cites W2002080383 @default.
- W2236763896 cites W2002664215 @default.
- W2236763896 cites W2003193361 @default.
- W2236763896 cites W2006141424 @default.
- W2236763896 cites W2015312737 @default.
- W2236763896 cites W2018001979 @default.
- W2236763896 cites W2018258430 @default.
- W2236763896 cites W2026158916 @default.
- W2236763896 cites W2028896367 @default.
- W2236763896 cites W2032640040 @default.
- W2236763896 cites W2033820259 @default.
- W2236763896 cites W2034969037 @default.
- W2236763896 cites W2043418691 @default.
- W2236763896 cites W2046357610 @default.
- W2236763896 cites W2046843006 @default.
- W2236763896 cites W2047668778 @default.
- W2236763896 cites W2049427598 @default.
- W2236763896 cites W2050324610 @default.
- W2236763896 cites W2060969362 @default.
- W2236763896 cites W2069453405 @default.
- W2236763896 cites W2071145526 @default.
- W2236763896 cites W2075114093 @default.
- W2236763896 cites W2076820091 @default.
- W2236763896 cites W2084159787 @default.
- W2236763896 cites W2085124299 @default.
- W2236763896 cites W2085366940 @default.
- W2236763896 cites W2091458120 @default.
- W2236763896 cites W2093464796 @default.
- W2236763896 cites W2095078322 @default.
- W2236763896 cites W2101922791 @default.
- W2236763896 cites W2102116725 @default.
- W2236763896 cites W2102978118 @default.
- W2236763896 cites W2103988007 @default.
- W2236763896 cites W2109706035 @default.
- W2236763896 cites W2111087655 @default.
- W2236763896 cites W2111412288 @default.
- W2236763896 cites W2115463092 @default.
- W2236763896 cites W2115562835 @default.
- W2236763896 cites W2124614417 @default.
- W2236763896 cites W2134208433 @default.
- W2236763896 cites W2138094116 @default.
- W2236763896 cites W2139098147 @default.
- W2236763896 cites W2143477132 @default.
- W2236763896 cites W2146202010 @default.
- W2236763896 cites W2156193902 @default.
- W2236763896 cites W2156644494 @default.
- W2236763896 cites W2170232720 @default.
- W2236763896 cites W2325881703 @default.
- W2236763896 cites W2477424666 @default.
- W2236763896 cites W2480318886 @default.
- W2236763896 cites W2786589993 @default.
- W2236763896 cites W2997010975 @default.
- W2236763896 cites W3150248096 @default.
- W2236763896 cites W220803858 @default.
- W2236763896 hasPublicationYear "2014" @default.
- W2236763896 type Work @default.
- W2236763896 sameAs 2236763896 @default.
- W2236763896 citedByCount "0" @default.
- W2236763896 crossrefType "journal-article" @default.
- W2236763896 hasAuthorship W2236763896A5086555995 @default.
- W2236763896 hasConcept C121332964 @default.
- W2236763896 hasConcept C126061179 @default.
- W2236763896 hasConcept C134306372 @default.
- W2236763896 hasConcept C134514944 @default.
- W2236763896 hasConcept C135628077 @default.
- W2236763896 hasConcept C14037181 @default.
- W2236763896 hasConcept C16171025 @default.
- W2236763896 hasConcept C192562407 @default.
- W2236763896 hasConcept C196806460 @default.
- W2236763896 hasConcept C32909587 @default.
- W2236763896 hasConcept C33923547 @default.
- W2236763896 hasConcept C57879066 @default.
- W2236763896 hasConcept C62520636 @default.
- W2236763896 hasConcept C6556556 @default.
- W2236763896 hasConcept C74650414 @default.
- W2236763896 hasConcept C97355855 @default.
- W2236763896 hasConceptScore W2236763896C121332964 @default.
- W2236763896 hasConceptScore W2236763896C126061179 @default.
- W2236763896 hasConceptScore W2236763896C134306372 @default.
- W2236763896 hasConceptScore W2236763896C134514944 @default.
- W2236763896 hasConceptScore W2236763896C135628077 @default.
- W2236763896 hasConceptScore W2236763896C14037181 @default.