Matches in SemOpenAlex for { <https://semopenalex.org/work/W2237782912> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2237782912 endingPage "54" @default.
- W2237782912 startingPage "35" @default.
- W2237782912 abstract "Editors’ introduction Renouf’s contribution, like those of Scott and Berber Sardinha, uses Corpus Linguistics (CL) techniques, analysing large amounts of text by computer. The focus in her paper is on the identification of signals of semantic relations. Thus the frame “or, more exactly” might signal a general-particular relationship in “we stopped by the side of a lake, or, more exactly a loch”. Lake is more general (a superordinate) than loch (a hyponym of lake). Renouf’s endeavour was to trace signals like “more exactly” in large text databases, looking at and teasing out the meaning relations which crop up. Her work thus complements Jordan’s analysis of Basis-Assessment in this volume, using quite different methods. At the same time, she attempts to find out how good a match may be made between lexical signal and meaning — it is quite possible in language that one form might carry numerous functions (and conversely that the same meaning relation can be realised by numerous forms). This implies a need to pin down the meanings identified. The context underlying this work is that of the influential work of Cruse (1986), which takes a non-CL view of meaning, heavily dependent on logic, and the notion of contextual normality by which Cruse means the test a near-native speaker or native speaker may make, as to whether a given string like “notable events such as a solar eclipse” seems normal. This is by no means a straightforward decision. Thus in (1) notable events such as meeting the President (2) notable events such as drinking tea the degree of contextual normality would vary in rather unpredictable ways, depending on whether or not one regularly drank tea or worked in the President’s office. The approach Renouf takes is to examine large numbers of texts using a computer, to see instead what forms are actually attested. In so doing, she finds that Cruse’s neat and logical patterns do not seem to be as neatly reflected in the evidence of large numbers of examples from newspaper text. These two methods are not really a simple matter of pre-CL and post-CL, nor are they alternatives, in our view. For a start, the notion of “attested” examples in Linguistics is not new at all, and much early work before computers went into collecting slips of paper with heard or read examples of words. Perhaps the best known example is the many thousands of slips collected by innumerable contributors, for the construction of the Oxford English Dictionary. Second, we would argue that to use CL techniques does not constitute a new Linguistics, any more than using a spade constitutes “Spade Gardening”. It is merely a matter of accessing resources. Third, it is not possible to use CL techniques without recourse to one’s intuitions, e.g. as to what is contextually normal. A CL method is only able to identify positive hits: when one finds numerous examples of a given string of words, one may conclude that it must be contextually normal. If one finds one only, one does not know whether it is a joke or nonce construction or is just rather unusual; and if the string is not found even in a large database, that in itself does not guarantee that it would be contextually abnormal, since new contextually normal strings can be created at any time. Renouf’s paper thus shows that lexical semantics needs insights from logic and intuitions of contextual normality, together with CL methods enabling access to large numbers of examples." @default.
- W2237782912 created "2016-06-24" @default.
- W2237782912 creator A5047063790 @default.
- W2237782912 date "2001-01-01" @default.
- W2237782912 modified "2023-09-25" @default.
- W2237782912 title "Lexical signals of word relations" @default.
- W2237782912 cites W171130554 @default.
- W2237782912 cites W2029491572 @default.
- W2237782912 cites W2147818125 @default.
- W2237782912 doi "https://doi.org/10.1075/z.107.04ren" @default.
- W2237782912 hasPublicationYear "2001" @default.
- W2237782912 type Work @default.
- W2237782912 sameAs 2237782912 @default.
- W2237782912 citedByCount "2" @default.
- W2237782912 crossrefType "book-chapter" @default.
- W2237782912 hasAuthorship W2237782912A5047063790 @default.
- W2237782912 hasBestOaLocation W22377829122 @default.
- W2237782912 hasConcept C111472728 @default.
- W2237782912 hasConcept C116834253 @default.
- W2237782912 hasConcept C120665830 @default.
- W2237782912 hasConcept C121332964 @default.
- W2237782912 hasConcept C138885662 @default.
- W2237782912 hasConcept C15744967 @default.
- W2237782912 hasConcept C166957645 @default.
- W2237782912 hasConcept C192209626 @default.
- W2237782912 hasConcept C205649164 @default.
- W2237782912 hasConcept C25343380 @default.
- W2237782912 hasConcept C2779343474 @default.
- W2237782912 hasConcept C2780876879 @default.
- W2237782912 hasConcept C41008148 @default.
- W2237782912 hasConcept C41895202 @default.
- W2237782912 hasConcept C59822182 @default.
- W2237782912 hasConcept C75291252 @default.
- W2237782912 hasConcept C77088390 @default.
- W2237782912 hasConcept C77805123 @default.
- W2237782912 hasConcept C78022038 @default.
- W2237782912 hasConcept C86803240 @default.
- W2237782912 hasConceptScore W2237782912C111472728 @default.
- W2237782912 hasConceptScore W2237782912C116834253 @default.
- W2237782912 hasConceptScore W2237782912C120665830 @default.
- W2237782912 hasConceptScore W2237782912C121332964 @default.
- W2237782912 hasConceptScore W2237782912C138885662 @default.
- W2237782912 hasConceptScore W2237782912C15744967 @default.
- W2237782912 hasConceptScore W2237782912C166957645 @default.
- W2237782912 hasConceptScore W2237782912C192209626 @default.
- W2237782912 hasConceptScore W2237782912C205649164 @default.
- W2237782912 hasConceptScore W2237782912C25343380 @default.
- W2237782912 hasConceptScore W2237782912C2779343474 @default.
- W2237782912 hasConceptScore W2237782912C2780876879 @default.
- W2237782912 hasConceptScore W2237782912C41008148 @default.
- W2237782912 hasConceptScore W2237782912C41895202 @default.
- W2237782912 hasConceptScore W2237782912C59822182 @default.
- W2237782912 hasConceptScore W2237782912C75291252 @default.
- W2237782912 hasConceptScore W2237782912C77088390 @default.
- W2237782912 hasConceptScore W2237782912C77805123 @default.
- W2237782912 hasConceptScore W2237782912C78022038 @default.
- W2237782912 hasConceptScore W2237782912C86803240 @default.
- W2237782912 hasLocation W22377829121 @default.
- W2237782912 hasLocation W22377829122 @default.
- W2237782912 hasOpenAccess W2237782912 @default.
- W2237782912 hasPrimaryLocation W22377829121 @default.
- W2237782912 hasRelatedWork W1527946064 @default.
- W2237782912 hasRelatedWork W1981886892 @default.
- W2237782912 hasRelatedWork W1984943388 @default.
- W2237782912 hasRelatedWork W2012206447 @default.
- W2237782912 hasRelatedWork W2022752546 @default.
- W2237782912 hasRelatedWork W2084730104 @default.
- W2237782912 hasRelatedWork W2186308130 @default.
- W2237782912 hasRelatedWork W2315568623 @default.
- W2237782912 hasRelatedWork W2395950890 @default.
- W2237782912 hasRelatedWork W2481557584 @default.
- W2237782912 hasRelatedWork W2485851334 @default.
- W2237782912 hasRelatedWork W2515965767 @default.
- W2237782912 hasRelatedWork W2900472636 @default.
- W2237782912 hasRelatedWork W314494392 @default.
- W2237782912 hasRelatedWork W64219901 @default.
- W2237782912 hasRelatedWork W651319892 @default.
- W2237782912 hasRelatedWork W83297407 @default.
- W2237782912 hasRelatedWork W86079039 @default.
- W2237782912 hasRelatedWork W925191748 @default.
- W2237782912 hasRelatedWork W2620644481 @default.
- W2237782912 isParatext "false" @default.
- W2237782912 isRetracted "false" @default.
- W2237782912 magId "2237782912" @default.
- W2237782912 workType "book-chapter" @default.