Matches in SemOpenAlex for { <https://semopenalex.org/work/W2238135223> ?p ?o ?g. }
- W2238135223 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2011 SIAM International Conference on Data Mining (SDM)Time Series Motifs Statistical SignificanceNuno Castro and Paulo J. AzevedoNuno CastroComputer Science and Technology Center, Department of Informatics, University of Minho, PortugalComputer Science and Technology Center, Department of Informatics, University of Minho, Portugal*Nuno Castro is supported by Fundação para a Ciěncia e a Tecnologia grant SFRH/BD/33303/2008.Search for more papers by this author and Paulo J. AzevedoComputer Science and Technology Center, Department of Informatics, University of Minho, PortugalComputer Science and Technology Center, Department of Informatics, University of Minho, Portugal†Paulo J. Azevedo is supported by Fundação para a Ciěncia e Tecnologia, Project ProtUnf, FEDER and Programa de Financiamento Plurianual de Unidades de I&D.Search for more papers by this authorpp.687 - 698Chapter DOI:https://doi.org/10.1137/1.9781611972818.59PDFBibTexSections ToolsAdd to favoritesDownload CitationsTrack CitationsEmail SectionsAboutAbstract Time series motif discovery is the task of extracting previously unknown recurrent patterns from time series data. It is an important problem within applications that range from finance to health. Many algorithms have been proposed for the task of efficiently finding motifs. Surprisingly, most of these proposals do not focus on how to evaluate the discovered motifs. They are typically evaluated by human experts. This is unfeasible even for moderately sized datasets, since the number of discovered motifs tends to be prohibitively large. Statistical significance tests are widely used in bioinformatics and association rules mining communities to evaluate the extracted patterns. In this work we present an approach to calculate time series motifs statistical significance. Our proposal leverages work from the bioinformatics community by using a symbolic definition of time series motifs to derive each motif's p-value. We estimate the expected frequency of a motif by using Markov Chain models. The p-value is then assessed by comparing the actual frequency to the estimated one using statistical hypothesis tests. Our contribution gives means to the application of a powerful technique – statistical tests – to a time series setting. This provides researchers and practitioners with an important tool to evaluate automatically the degree of relevance of each extracted motif. Previous chapter Next chapter RelatedDetails Published:2011ISBN:978-0-89871-992-5eISBN:978-1-61197-281-8 https://doi.org/10.1137/1.9781611972818Book Series Name:ProceedingsBook Code:PRDT11Book Pages:1-1015Key words:Time Series, Motif Discovery, Statistical Significance tests, Significant Patterns" @default.
- W2238135223 created "2016-06-24" @default.
- W2238135223 creator A5008123517 @default.
- W2238135223 creator A5081147389 @default.
- W2238135223 date "2011-04-28" @default.
- W2238135223 modified "2023-10-16" @default.
- W2238135223 title "Time Series Motifs Statistical Significance" @default.
- W2238135223 cites W1505947825 @default.
- W2238135223 cites W1513731586 @default.
- W2238135223 cites W1528798280 @default.
- W2238135223 cites W1595324333 @default.
- W2238135223 cites W1797971474 @default.
- W2238135223 cites W1853995153 @default.
- W2238135223 cites W1966406756 @default.
- W2238135223 cites W1973222433 @default.
- W2238135223 cites W1981383465 @default.
- W2238135223 cites W1995003166 @default.
- W2238135223 cites W2003105801 @default.
- W2238135223 cites W2006761268 @default.
- W2238135223 cites W2015927259 @default.
- W2238135223 cites W2037585573 @default.
- W2238135223 cites W2046113363 @default.
- W2238135223 cites W2049704739 @default.
- W2238135223 cites W2055030646 @default.
- W2238135223 cites W2072678748 @default.
- W2238135223 cites W2077720176 @default.
- W2238135223 cites W2089163963 @default.
- W2238135223 cites W20964769 @default.
- W2238135223 cites W2097997754 @default.
- W2238135223 cites W2098759488 @default.
- W2238135223 cites W2099800150 @default.
- W2238135223 cites W2105510466 @default.
- W2238135223 cites W2111322461 @default.
- W2238135223 cites W2115847707 @default.
- W2238135223 cites W2121044470 @default.
- W2238135223 cites W2125723560 @default.
- W2238135223 cites W2133278476 @default.
- W2238135223 cites W2148315211 @default.
- W2238135223 cites W2153624566 @default.
- W2238135223 cites W2159123127 @default.
- W2238135223 cites W2159507861 @default.
- W2238135223 cites W2160119185 @default.
- W2238135223 cites W2168137269 @default.
- W2238135223 cites W2181783959 @default.
- W2238135223 cites W2621009221 @default.
- W2238135223 cites W79168991 @default.
- W2238135223 doi "https://doi.org/10.1137/1.9781611972818.59" @default.
- W2238135223 hasPublicationYear "2011" @default.
- W2238135223 type Work @default.
- W2238135223 sameAs 2238135223 @default.
- W2238135223 citedByCount "10" @default.
- W2238135223 countsByYear W22381352232012 @default.
- W2238135223 countsByYear W22381352232013 @default.
- W2238135223 countsByYear W22381352232016 @default.
- W2238135223 countsByYear W22381352232018 @default.
- W2238135223 countsByYear W22381352232019 @default.
- W2238135223 countsByYear W22381352232020 @default.
- W2238135223 countsByYear W22381352232022 @default.
- W2238135223 crossrefType "proceedings-article" @default.
- W2238135223 hasAuthorship W2238135223A5008123517 @default.
- W2238135223 hasAuthorship W2238135223A5081147389 @default.
- W2238135223 hasBestOaLocation W22381352232 @default.
- W2238135223 hasConcept C119599485 @default.
- W2238135223 hasConcept C127413603 @default.
- W2238135223 hasConcept C145642194 @default.
- W2238135223 hasConcept C160735492 @default.
- W2238135223 hasConcept C161191863 @default.
- W2238135223 hasConcept C17744445 @default.
- W2238135223 hasConcept C191630685 @default.
- W2238135223 hasConcept C199539241 @default.
- W2238135223 hasConcept C2522767166 @default.
- W2238135223 hasConcept C41008148 @default.
- W2238135223 hasConceptScore W2238135223C119599485 @default.
- W2238135223 hasConceptScore W2238135223C127413603 @default.
- W2238135223 hasConceptScore W2238135223C145642194 @default.
- W2238135223 hasConceptScore W2238135223C160735492 @default.
- W2238135223 hasConceptScore W2238135223C161191863 @default.
- W2238135223 hasConceptScore W2238135223C17744445 @default.
- W2238135223 hasConceptScore W2238135223C191630685 @default.
- W2238135223 hasConceptScore W2238135223C199539241 @default.
- W2238135223 hasConceptScore W2238135223C2522767166 @default.
- W2238135223 hasConceptScore W2238135223C41008148 @default.
- W2238135223 hasLocation W22381352231 @default.
- W2238135223 hasLocation W22381352232 @default.
- W2238135223 hasLocation W22381352233 @default.
- W2238135223 hasOpenAccess W2238135223 @default.
- W2238135223 hasPrimaryLocation W22381352231 @default.
- W2238135223 hasRelatedWork W1566132518 @default.
- W2238135223 hasRelatedWork W1575151300 @default.
- W2238135223 hasRelatedWork W1977501446 @default.
- W2238135223 hasRelatedWork W2035895397 @default.
- W2238135223 hasRelatedWork W2044191049 @default.
- W2238135223 hasRelatedWork W2121784101 @default.
- W2238135223 hasRelatedWork W2535584405 @default.
- W2238135223 hasRelatedWork W2980822416 @default.
- W2238135223 hasRelatedWork W3213321031 @default.
- W2238135223 hasRelatedWork W4307504022 @default.
- W2238135223 isParatext "false" @default.
- W2238135223 isRetracted "false" @default.
- W2238135223 magId "2238135223" @default.