Matches in SemOpenAlex for { <https://semopenalex.org/work/W2238234948> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2238234948 endingPage "472" @default.
- W2238234948 startingPage "463" @default.
- W2238234948 abstract "Generalizing an idea used by Bouc, Thevenaz, Webb and others, we introduce the notion of an admissible R-linear category for a commutative unital ring R. Given an R-linear category (mathcal {L}), we define an (mathcal {L})-functor to be a functor from (mathcal {L}) to the category of R-modules. In the case where (mathcal {L}) is admissible, we establish a bijective correspondence between the isomorphism classes of simple functors and the equivalence classes of pairs (G, V) where G is an object and V is a module of a certain quotient of the endomorphism algebra of G. Here, two pairs (F, U) and (G, V) are equivalent provided there exists an isomorphism F ← G effecting transport to U from V. We apply this to the category of finite abelian p-groups and to a class of subcategories of the biset category." @default.
- W2238234948 created "2016-06-24" @default.
- W2238234948 creator A5016150573 @default.
- W2238234948 creator A5042412213 @default.
- W2238234948 date "2016-01-14" @default.
- W2238234948 modified "2023-09-24" @default.
- W2238234948 title "Simple Functors of Admissible Linear Categories" @default.
- W2238234948 cites W2963072547 @default.
- W2238234948 cites W2963822578 @default.
- W2238234948 cites W2964064718 @default.
- W2238234948 cites W4206045898 @default.
- W2238234948 cites W606944415 @default.
- W2238234948 doi "https://doi.org/10.1007/s10468-015-9583-2" @default.
- W2238234948 hasPublicationYear "2016" @default.
- W2238234948 type Work @default.
- W2238234948 sameAs 2238234948 @default.
- W2238234948 citedByCount "3" @default.
- W2238234948 countsByYear W22382349482016 @default.
- W2238234948 countsByYear W22382349482019 @default.
- W2238234948 countsByYear W22382349482020 @default.
- W2238234948 crossrefType "journal-article" @default.
- W2238234948 hasAuthorship W2238234948A5016150573 @default.
- W2238234948 hasAuthorship W2238234948A5042412213 @default.
- W2238234948 hasBestOaLocation W22382349482 @default.
- W2238234948 hasConcept C111472728 @default.
- W2238234948 hasConcept C136119220 @default.
- W2238234948 hasConcept C138885662 @default.
- W2238234948 hasConcept C156772000 @default.
- W2238234948 hasConcept C202444582 @default.
- W2238234948 hasConcept C2780586882 @default.
- W2238234948 hasConcept C33923547 @default.
- W2238234948 hasConceptScore W2238234948C111472728 @default.
- W2238234948 hasConceptScore W2238234948C136119220 @default.
- W2238234948 hasConceptScore W2238234948C138885662 @default.
- W2238234948 hasConceptScore W2238234948C156772000 @default.
- W2238234948 hasConceptScore W2238234948C202444582 @default.
- W2238234948 hasConceptScore W2238234948C2780586882 @default.
- W2238234948 hasConceptScore W2238234948C33923547 @default.
- W2238234948 hasIssue "2" @default.
- W2238234948 hasLocation W22382349481 @default.
- W2238234948 hasLocation W22382349482 @default.
- W2238234948 hasLocation W22382349483 @default.
- W2238234948 hasOpenAccess W2238234948 @default.
- W2238234948 hasPrimaryLocation W22382349481 @default.
- W2238234948 hasRelatedWork W1992729023 @default.
- W2238234948 hasRelatedWork W1996333803 @default.
- W2238234948 hasRelatedWork W2021915098 @default.
- W2238234948 hasRelatedWork W2037697064 @default.
- W2238234948 hasRelatedWork W2115312502 @default.
- W2238234948 hasRelatedWork W2150706552 @default.
- W2238234948 hasRelatedWork W2165986557 @default.
- W2238234948 hasRelatedWork W2234982114 @default.
- W2238234948 hasRelatedWork W2962931714 @default.
- W2238234948 hasRelatedWork W4249632018 @default.
- W2238234948 hasVolume "19" @default.
- W2238234948 isParatext "false" @default.
- W2238234948 isRetracted "false" @default.
- W2238234948 magId "2238234948" @default.
- W2238234948 workType "article" @default.