Matches in SemOpenAlex for { <https://semopenalex.org/work/W2238367949> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2238367949 abstract "Abstract Heat transfer is an imperative mechanism in the SAGD (steam assisted gravity drainage) process for bitumen production. A better understanding of the heat transfer process is critical for a successful SAGD project design. Following the work of Butler (1981, 1985 and 1997), the conduction only assumption has been widely used. However, there have been some studies indicating the importance of convection heat transfer at the edge of a SAGD chamber. Based on analysis of physical heat transfer mechanisms in the SAGD process, an improved analytical model is developed in this study to calculate the condensate velocity and heat transfer considering both conduction and convection. First, heat transfer at the edge of a steam chamber is analyzed to understand the role of condensate flow and steam chamber interface movement. Three possible cases are proposed to analyze the relationship between the energy left behind the front because of the steam chamber interface movement and the energy carried into the cold reservoir by the condensate flow in the SAGD process. Based on the heat balance analysis and available temperature-saturation relationship, a modified condensate velocity normal to the interface of a SAGD chamber is proposed. It is assumed that the condensate velocity is proportional to the steam chamber interface movement velocity, the fluid mobility ratio of reservoir to steam chamber interface, and the volume heat capacity ratio of reservoir to steam condensates. This new velocity is used to investigate the convection role in the heat transfer of the SAGD process. Moreover, heat transfer equations are solved by using constant heat flow (or Robin) boundary condition to verify the widely-used constant temperature (or Dirichlet) boundary condition at the edge of the steam chamber. The newly developed model is validated by calculating and comparing the condensate velocity normal to the interface, apparent thermal diffusivity and heat fluxes ahead of the steam chamber with filed data (Dover UTF Phase B, Athabasca Reservoir). It is shown that convection can provide a larger contribution to heat transfer than conduction at the edge of a steam chamber, but drops rapidly over a short distance normal to the interface. Considering a large convective heat flow at the edge of the SAGD chamber, temperature can be thought as a constant with minor error. The developed theory provides a quick prediction of apparent thermal diffusivity, temperature distribution, heat fluxes considering both conduction and convection for the design of SAGD projects. Furthermore, it offers a simple formula to show connection between the condensate velocities normal to a chamber interface and the movement velocity of the chamber interface, which can be applied to any thermal processes with steam chamber expanding." @default.
- W2238367949 created "2016-06-24" @default.
- W2238367949 creator A5029144261 @default.
- W2238367949 creator A5086480330 @default.
- W2238367949 date "2015-09-28" @default.
- W2238367949 modified "2023-10-16" @default.
- W2238367949 title "A New Analysis on the Convective Heat Transfer at the Edge of the SAGD Chamber" @default.
- W2238367949 cites W1968239276 @default.
- W2238367949 cites W1981070139 @default.
- W2238367949 cites W1995589975 @default.
- W2238367949 cites W1999821497 @default.
- W2238367949 cites W2057285821 @default.
- W2238367949 cites W2082643041 @default.
- W2238367949 cites W2092936387 @default.
- W2238367949 cites W2095195670 @default.
- W2238367949 cites W2101109037 @default.
- W2238367949 cites W4239763490 @default.
- W2238367949 cites W2031309972 @default.
- W2238367949 doi "https://doi.org/10.2118/175063-ms" @default.
- W2238367949 hasPublicationYear "2015" @default.
- W2238367949 type Work @default.
- W2238367949 sameAs 2238367949 @default.
- W2238367949 citedByCount "17" @default.
- W2238367949 countsByYear W22383679492016 @default.
- W2238367949 countsByYear W22383679492017 @default.
- W2238367949 countsByYear W22383679492018 @default.
- W2238367949 countsByYear W22383679492019 @default.
- W2238367949 countsByYear W22383679492021 @default.
- W2238367949 countsByYear W22383679492023 @default.
- W2238367949 crossrefType "proceedings-article" @default.
- W2238367949 hasAuthorship W2238367949A5029144261 @default.
- W2238367949 hasAuthorship W2238367949A5086480330 @default.
- W2238367949 hasConcept C10899652 @default.
- W2238367949 hasConcept C121332964 @default.
- W2238367949 hasConcept C172100665 @default.
- W2238367949 hasConcept C41231900 @default.
- W2238367949 hasConcept C50517652 @default.
- W2238367949 hasConcept C57879066 @default.
- W2238367949 hasConcept C97355855 @default.
- W2238367949 hasConceptScore W2238367949C10899652 @default.
- W2238367949 hasConceptScore W2238367949C121332964 @default.
- W2238367949 hasConceptScore W2238367949C172100665 @default.
- W2238367949 hasConceptScore W2238367949C41231900 @default.
- W2238367949 hasConceptScore W2238367949C50517652 @default.
- W2238367949 hasConceptScore W2238367949C57879066 @default.
- W2238367949 hasConceptScore W2238367949C97355855 @default.
- W2238367949 hasLocation W22383679491 @default.
- W2238367949 hasOpenAccess W2238367949 @default.
- W2238367949 hasPrimaryLocation W22383679491 @default.
- W2238367949 hasRelatedWork W1005460174 @default.
- W2238367949 hasRelatedWork W1559070158 @default.
- W2238367949 hasRelatedWork W2000815205 @default.
- W2238367949 hasRelatedWork W2087997852 @default.
- W2238367949 hasRelatedWork W2760400221 @default.
- W2238367949 hasRelatedWork W3021309486 @default.
- W2238367949 hasRelatedWork W3037733887 @default.
- W2238367949 hasRelatedWork W315717575 @default.
- W2238367949 hasRelatedWork W3191953529 @default.
- W2238367949 hasRelatedWork W89871792 @default.
- W2238367949 isParatext "false" @default.
- W2238367949 isRetracted "false" @default.
- W2238367949 magId "2238367949" @default.
- W2238367949 workType "article" @default.