Matches in SemOpenAlex for { <https://semopenalex.org/work/W2238687761> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2238687761 abstract "In the first part Busemann concavity as non-negative curvature is introduced and a bi-Lipschitz splitting theorem is shown. Furthermore, if the Hausdorff measure of a Busemann concave space is non-trivial then the space is doubling and satisfies a Poincare condition and the measure contraction property. In the second part the notion of uniform smoothness known from the theory of Banach spaces is applied to metric spaces. It is shown that Busemann functions are (quasi-)convex. This implies the existence of a weak soul. In the end further properties are developed to further dissect the soul. In order to understand the influence of curvature on the geometry of a space it helps to develop a synthetic notion. Via comparison geometry sectional curvature bounds can be obtained that demanding that triangles are thinner or fatter. The two classes are called CAT(κ)- and resp. CBB(κ)-spaces. We refer to the book (BH99) and the forthcoming book (AKP) (see also (BGP92, Ots97)). Note that all those notions imply a Riemannian character of the metric space. In particular, the angle between two geodesics starting at a common point is well-defined. Busemann (Bus55, Section 36) study a weaker notion of non-positive curvature which also applies to normed spaces. A similar idea was developed by Pedersen (Ped52) (see also (Bus55, (36.15))) which fits better in the study of Hilbert geometries (KS58). In the recent year a synthetic notion of a lower bound on the Ricci curvature was defined by Lott-Villani (LV09) and Sturm (Stu06). However, their condition include also Finsler manifolds (Oht09, Oht13). The notion of lower curvature bound in the sense of Alexandrov, i.e. CBB(κ)-spaces, is compatible with this Ricci bound (Pet10, GKO13). However, by now there is no known sectional curvature analogue for Finsler-like spaces which is compatible the synthetic Ricci bounds. In this note we present two approaches towards a sectional curvature-type con- dition. The first is the converse of Busemann's non-positive curvature condition. This condition implies a bi-Lipschitz splitting theorem, uniqueness of tangent cones and if the space admits a non-trivial Hausdorff measure then such spaces satisfy doubling and Poincare conditions and even the measure contraction property. This approach rather focuses on the generalized angles formed by two geodesics. The second approach can be seen as a dual to the theory of uniformly convex metric spaces which we call uniform smoothness. This rather weak condition is only powerful in the large. More precisely, we show that Busemann functions associated to rays are (quasi-)convex and that the space has a weak soul. In order to match the theory in the smooth setting we try to develop further assumptions which imply" @default.
- W2238687761 created "2016-06-24" @default.
- W2238687761 creator A5075708170 @default.
- W2238687761 date "2016-01-13" @default.
- W2238687761 modified "2023-09-27" @default.
- W2238687761 title "Sectional curvature-type conditions on Finsler-like metric spaces" @default.
- W2238687761 cites W1487213652 @default.
- W2238687761 cites W1491997640 @default.
- W2238687761 cites W1512388191 @default.
- W2238687761 cites W1522722022 @default.
- W2238687761 cites W1575279189 @default.
- W2238687761 cites W1598917891 @default.
- W2238687761 cites W1905777961 @default.
- W2238687761 cites W1968781546 @default.
- W2238687761 cites W1993767762 @default.
- W2238687761 cites W2007338883 @default.
- W2238687761 cites W2009374275 @default.
- W2238687761 cites W2010539125 @default.
- W2238687761 cites W2011680707 @default.
- W2238687761 cites W2021346516 @default.
- W2238687761 cites W2024392085 @default.
- W2238687761 cites W2027673210 @default.
- W2238687761 cites W2029190007 @default.
- W2238687761 cites W2029802136 @default.
- W2238687761 cites W2045049746 @default.
- W2238687761 cites W2088940417 @default.
- W2238687761 cites W2102144526 @default.
- W2238687761 cites W2134086356 @default.
- W2238687761 cites W2134108661 @default.
- W2238687761 cites W2151038712 @default.
- W2238687761 cites W2169670520 @default.
- W2238687761 cites W2248296510 @default.
- W2238687761 cites W2302771058 @default.
- W2238687761 cites W2331155048 @default.
- W2238687761 cites W235996464 @default.
- W2238687761 cites W2963024192 @default.
- W2238687761 cites W2963341085 @default.
- W2238687761 cites W2963559242 @default.
- W2238687761 cites W594409084 @default.
- W2238687761 hasPublicationYear "2016" @default.
- W2238687761 type Work @default.
- W2238687761 sameAs 2238687761 @default.
- W2238687761 citedByCount "1" @default.
- W2238687761 countsByYear W22386877612016 @default.
- W2238687761 crossrefType "posted-content" @default.
- W2238687761 hasAuthorship W2238687761A5075708170 @default.
- W2238687761 hasConcept C12089564 @default.
- W2238687761 hasConcept C12520029 @default.
- W2238687761 hasConcept C134306372 @default.
- W2238687761 hasConcept C165818556 @default.
- W2238687761 hasConcept C183517385 @default.
- W2238687761 hasConcept C195065555 @default.
- W2238687761 hasConcept C198043062 @default.
- W2238687761 hasConcept C202444582 @default.
- W2238687761 hasConcept C2524010 @default.
- W2238687761 hasConcept C33923547 @default.
- W2238687761 hasConcept C42448751 @default.
- W2238687761 hasConceptScore W2238687761C12089564 @default.
- W2238687761 hasConceptScore W2238687761C12520029 @default.
- W2238687761 hasConceptScore W2238687761C134306372 @default.
- W2238687761 hasConceptScore W2238687761C165818556 @default.
- W2238687761 hasConceptScore W2238687761C183517385 @default.
- W2238687761 hasConceptScore W2238687761C195065555 @default.
- W2238687761 hasConceptScore W2238687761C198043062 @default.
- W2238687761 hasConceptScore W2238687761C202444582 @default.
- W2238687761 hasConceptScore W2238687761C2524010 @default.
- W2238687761 hasConceptScore W2238687761C33923547 @default.
- W2238687761 hasConceptScore W2238687761C42448751 @default.
- W2238687761 hasLocation W22386877611 @default.
- W2238687761 hasOpenAccess W2238687761 @default.
- W2238687761 hasPrimaryLocation W22386877611 @default.
- W2238687761 hasRelatedWork W133074671 @default.
- W2238687761 hasRelatedWork W1532677595 @default.
- W2238687761 hasRelatedWork W1887289104 @default.
- W2238687761 hasRelatedWork W1970564715 @default.
- W2238687761 hasRelatedWork W2002206527 @default.
- W2238687761 hasRelatedWork W2006472630 @default.
- W2238687761 hasRelatedWork W2067866905 @default.
- W2238687761 hasRelatedWork W2113740301 @default.
- W2238687761 hasRelatedWork W2277881038 @default.
- W2238687761 hasRelatedWork W2313083214 @default.
- W2238687761 hasRelatedWork W2755022083 @default.
- W2238687761 hasRelatedWork W2949419807 @default.
- W2238687761 hasRelatedWork W2949503624 @default.
- W2238687761 hasRelatedWork W2950407878 @default.
- W2238687761 hasRelatedWork W2952293754 @default.
- W2238687761 hasRelatedWork W2963952977 @default.
- W2238687761 hasRelatedWork W2971018813 @default.
- W2238687761 hasRelatedWork W2997945196 @default.
- W2238687761 hasRelatedWork W3100851706 @default.
- W2238687761 hasRelatedWork W95217781 @default.
- W2238687761 isParatext "false" @default.
- W2238687761 isRetracted "false" @default.
- W2238687761 magId "2238687761" @default.
- W2238687761 workType "article" @default.