Matches in SemOpenAlex for { <https://semopenalex.org/work/W2238941663> ?p ?o ?g. }
- W2238941663 abstract "The first part of this thesis is devoted to the study of an Affine Term Structure Model (ATSM) where we use Wishart-like processes to model the stochastic variance-covariance of interest rates. This work was initially motivated by some thoughts on calibration and model risk in hedging interest rates derivatives. The ambition of our work is to build a model which reduces as much as possible the noise coming from daily re-calibration of the model to the market. It is standard market practice to hedge interest rates derivatives using models with parameters that are calibrated on a daily basis to fit the market prices of a set of well chosen instruments (typically the instrument that will be used to hedge the derivative). The model assumes that the parameters are constant, and the model price is based on this assumption; however since these parameters are re-calibrated, they become in fact stochastic. Therefore, calibration introduces some additional terms in the price dynamics (precisely in the drift term of the dynamics) which can lead to poor P&L explain, and mishedging. The initial idea of our research work is to replace the parameters by factors, and assume a dynamics for these factors, and assume that all the parameters involved in the model are constant. Instead of calibrating the parameters to the market, we fit the value of the factors to the observed market prices.A large part of this work has been devoted to the development of an efficient numerical framework to implement the model. We study second order discretization schemes for Monte Carlo simulation of the model. We also study efficient methods for pricing vanilla instru- ments such as swaptions and caplets. In particular, we investigate expansion techniques for prices and volatility of caplets and swaptions. The arguments that we use to obtain the expansion rely on an expansion of the infinitesimal generator with respect to a perturbation factor. Finally we have studied the calibration problem. As mentioned before, the idea of the model we study in this thesis is to keep the parameters of the model constant, and calibrate the values of the factors to fit the market. In particular, we need to calibrate the initial values (or the variations) of the Wishart-like process to fit the market, which introduces a positive semidefinite constraint in the optimization problem. Semidefinite programming (SDP) gives a natural framework to handle this constraint.The second part of this thesis presents some of the work I have done on the hedging of interest rate risk in ALM. This work was motivated by the business at Cr edit Agricole S.A. and in particular by the Financial Division of the bank. The purpose of this part of the dis- sertation is twofold. First we want to communicate on a field of Finance which is less known by the mathematical finance community, and presents some interesting modeling challenges. Secondly we try to present an original approach to modeling and hedging interest rate risk.Chapter 6 is an attempt to formalize some of concepts that are used in practice in ALM. We recall some of the key concepts such as the schedule of an asset or a liability and the interest rate gap, and introduce a new concept : the notion of envelope. This concept will look familiar to people used to derivatives pricing, and the hedging of the interest rate riskof an asset or a liability (closing the gap using the language of ALM) is very similar to the hedging of an option. The remaining chapters present the results of the work we have done in three different projects." @default.
- W2238941663 created "2016-06-24" @default.
- W2238941663 creator A5038305708 @default.
- W2238941663 date "2015-05-29" @default.
- W2238941663 modified "2023-09-25" @default.
- W2238941663 title "Multi-dimensional stochastic volatility for Interest Rates" @default.
- W2238941663 cites W1480459000 @default.
- W2238941663 cites W1485714208 @default.
- W2238941663 cites W1512252999 @default.
- W2238941663 cites W1514815886 @default.
- W2238941663 cites W1575658391 @default.
- W2238941663 cites W1586599381 @default.
- W2238941663 cites W1666621694 @default.
- W2238941663 cites W1699104278 @default.
- W2238941663 cites W1874510373 @default.
- W2238941663 cites W1886933190 @default.
- W2238941663 cites W1965774774 @default.
- W2238941663 cites W1968542615 @default.
- W2238941663 cites W1978334601 @default.
- W2238941663 cites W1983886831 @default.
- W2238941663 cites W1985018066 @default.
- W2238941663 cites W1998548744 @default.
- W2238941663 cites W1998846299 @default.
- W2238941663 cites W2001244105 @default.
- W2238941663 cites W2003137736 @default.
- W2238941663 cites W2007895608 @default.
- W2238941663 cites W2016457067 @default.
- W2238941663 cites W2018055712 @default.
- W2238941663 cites W2021764764 @default.
- W2238941663 cites W2027654260 @default.
- W2238941663 cites W2028317670 @default.
- W2238941663 cites W2033049071 @default.
- W2238941663 cites W2037655932 @default.
- W2238941663 cites W2042040828 @default.
- W2238941663 cites W2051323744 @default.
- W2238941663 cites W2064545790 @default.
- W2238941663 cites W2068629725 @default.
- W2238941663 cites W2073476019 @default.
- W2238941663 cites W2076057077 @default.
- W2238941663 cites W2079972701 @default.
- W2238941663 cites W2092264912 @default.
- W2238941663 cites W2092545617 @default.
- W2238941663 cites W2102100924 @default.
- W2238941663 cites W2103099040 @default.
- W2238941663 cites W2117202489 @default.
- W2238941663 cites W2122959466 @default.
- W2238941663 cites W2127034316 @default.
- W2238941663 cites W2133608028 @default.
- W2238941663 cites W2141261622 @default.
- W2238941663 cites W2142235730 @default.
- W2238941663 cites W2145575592 @default.
- W2238941663 cites W2151162365 @default.
- W2238941663 cites W2160819455 @default.
- W2238941663 cites W2164777891 @default.
- W2238941663 cites W2165988614 @default.
- W2238941663 cites W2170444200 @default.
- W2238941663 cites W2296319761 @default.
- W2238941663 cites W2338681524 @default.
- W2238941663 cites W2611794916 @default.
- W2238941663 cites W2952843022 @default.
- W2238941663 cites W2956412360 @default.
- W2238941663 cites W297795963 @default.
- W2238941663 cites W3012274919 @default.
- W2238941663 cites W3021400041 @default.
- W2238941663 cites W3021444882 @default.
- W2238941663 cites W306036246 @default.
- W2238941663 cites W3121177952 @default.
- W2238941663 cites W3121456868 @default.
- W2238941663 cites W3122025015 @default.
- W2238941663 cites W3122132986 @default.
- W2238941663 cites W3122241113 @default.
- W2238941663 cites W3122241587 @default.
- W2238941663 cites W3122812315 @default.
- W2238941663 cites W3123180977 @default.
- W2238941663 cites W3123192923 @default.
- W2238941663 cites W3123540654 @default.
- W2238941663 cites W3123653736 @default.
- W2238941663 cites W3124307332 @default.
- W2238941663 cites W3124550051 @default.
- W2238941663 cites W3125050320 @default.
- W2238941663 cites W3125427822 @default.
- W2238941663 cites W3125453173 @default.
- W2238941663 cites W3125890881 @default.
- W2238941663 cites W3126049948 @default.
- W2238941663 cites W3139998158 @default.
- W2238941663 cites W615062705 @default.
- W2238941663 cites W2885527782 @default.
- W2238941663 hasPublicationYear "2015" @default.
- W2238941663 type Work @default.
- W2238941663 sameAs 2238941663 @default.
- W2238941663 citedByCount "0" @default.
- W2238941663 crossrefType "dissertation" @default.
- W2238941663 hasAuthorship W2238941663A5038305708 @default.
- W2238941663 hasConcept C105795698 @default.
- W2238941663 hasConcept C108018779 @default.
- W2238941663 hasConcept C149782125 @default.
- W2238941663 hasConcept C162324750 @default.
- W2238941663 hasConcept C165838908 @default.
- W2238941663 hasConcept C175025494 @default.
- W2238941663 hasConcept C178650346 @default.