Matches in SemOpenAlex for { <https://semopenalex.org/work/W2239742255> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2239742255 endingPage "81" @default.
- W2239742255 startingPage "63" @default.
- W2239742255 abstract "We consider the efficient numerical approximation for parametric nonlinear systems of initial value Ordinary Differential Equations (ODEs) on Banach state spaces (mathcal{S}) over (mathbb{R}) or (mathbb{C}). We assume the right hand side depends analytically on a vector (y = (y_{j})_{jgeq 1}) of possibly countably many parameters, normalized such that | y j | ≤ 1. Such affine parameter dependence of the ODE arises, among others, in mass action models in computational biology and in stoichiometry with uncertain reaction rate constants. We review results by the authors on N-term approximation rates for the parametric solutions, i.e. summability theorems for coefficient sequences of generalized polynomial chaos (gpc) expansions of the parametric solutions {X(⋅ ; y)} y ∈ U with respect to tensorized polynomial bases of L 2(U). We give sufficient conditions on the ODEs for N-term truncations of these expansions to converge on the entire parameter space with efficiency (i.e. accuracy versus complexity) being independent of the number of parameters viz. the dimension of the parameter space U. We investigate a heuristic adaptive approach for computing sparse, approximate representations of the ({X(t;y): 0 leq t leq T} subset mathcal{S}). We increase efficiency by relating the accuracy of the adaptive initial value ODE solver to the estimated detail operator in the Smolyak formula. We also report tests which indicate that the proposed algorithms and the analyticity results hold for more general, nonaffine analytic dependence on parameters." @default.
- W2239742255 created "2016-06-24" @default.
- W2239742255 creator A5036122196 @default.
- W2239742255 creator A5039330337 @default.
- W2239742255 creator A5055530686 @default.
- W2239742255 date "2014-01-01" @default.
- W2239742255 modified "2023-09-24" @default.
- W2239742255 title "Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems" @default.
- W2239742255 cites W1592142621 @default.
- W2239742255 cites W1970476229 @default.
- W2239742255 cites W1982421072 @default.
- W2239742255 cites W1997719109 @default.
- W2239742255 cites W1998021317 @default.
- W2239742255 cites W2000408025 @default.
- W2239742255 cites W2005606401 @default.
- W2239742255 cites W2025025900 @default.
- W2239742255 cites W2049222546 @default.
- W2239742255 cites W2056227133 @default.
- W2239742255 cites W2069201579 @default.
- W2239742255 cites W2070980742 @default.
- W2239742255 cites W2082617508 @default.
- W2239742255 cites W2113478610 @default.
- W2239742255 cites W2117188967 @default.
- W2239742255 cites W2142863015 @default.
- W2239742255 cites W2203953893 @default.
- W2239742255 cites W2964198215 @default.
- W2239742255 cites W3021293439 @default.
- W2239742255 cites W3209416867 @default.
- W2239742255 doi "https://doi.org/10.1007/978-3-319-09063-4_6" @default.
- W2239742255 hasPublicationYear "2014" @default.
- W2239742255 type Work @default.
- W2239742255 sameAs 2239742255 @default.
- W2239742255 citedByCount "2" @default.
- W2239742255 countsByYear W22397422552013 @default.
- W2239742255 countsByYear W22397422552015 @default.
- W2239742255 crossrefType "book-chapter" @default.
- W2239742255 hasAuthorship W2239742255A5036122196 @default.
- W2239742255 hasAuthorship W2239742255A5039330337 @default.
- W2239742255 hasAuthorship W2239742255A5055530686 @default.
- W2239742255 hasBestOaLocation W22397422552 @default.
- W2239742255 hasConcept C105795698 @default.
- W2239742255 hasConcept C11413529 @default.
- W2239742255 hasConcept C117251300 @default.
- W2239742255 hasConcept C126255220 @default.
- W2239742255 hasConcept C2776291640 @default.
- W2239742255 hasConcept C28826006 @default.
- W2239742255 hasConcept C33923547 @default.
- W2239742255 hasConcept C41008148 @default.
- W2239742255 hasConceptScore W2239742255C105795698 @default.
- W2239742255 hasConceptScore W2239742255C11413529 @default.
- W2239742255 hasConceptScore W2239742255C117251300 @default.
- W2239742255 hasConceptScore W2239742255C126255220 @default.
- W2239742255 hasConceptScore W2239742255C2776291640 @default.
- W2239742255 hasConceptScore W2239742255C28826006 @default.
- W2239742255 hasConceptScore W2239742255C33923547 @default.
- W2239742255 hasConceptScore W2239742255C41008148 @default.
- W2239742255 hasLocation W22397422551 @default.
- W2239742255 hasLocation W22397422552 @default.
- W2239742255 hasOpenAccess W2239742255 @default.
- W2239742255 hasPrimaryLocation W22397422551 @default.
- W2239742255 hasRelatedWork W1996810073 @default.
- W2239742255 hasRelatedWork W2013596190 @default.
- W2239742255 hasRelatedWork W2156788334 @default.
- W2239742255 hasRelatedWork W2333698505 @default.
- W2239742255 hasRelatedWork W2351491280 @default.
- W2239742255 hasRelatedWork W2351859806 @default.
- W2239742255 hasRelatedWork W2371447506 @default.
- W2239742255 hasRelatedWork W2386767533 @default.
- W2239742255 hasRelatedWork W303980170 @default.
- W2239742255 hasRelatedWork W4239376463 @default.
- W2239742255 isParatext "false" @default.
- W2239742255 isRetracted "false" @default.
- W2239742255 magId "2239742255" @default.
- W2239742255 workType "book-chapter" @default.