Matches in SemOpenAlex for { <https://semopenalex.org/work/W2240491010> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2240491010 endingPage "1026" @default.
- W2240491010 startingPage "1016" @default.
- W2240491010 abstract "Surfactant-enhanced aquifer remediation (SEAR) is an efficient way for clearing dense nonaqueous phase liquids (DNAPLs) which may result in serious environment and health threats. To limit the high cost of SEAR, simulation optimization techniques are generally applied to ensure that an optimal remediation strategy is achieved. Furthermore, surrogate model techniques have been widely used to reduce the high computational burden associated with these processes. However, previous research rarely involved comparison of different surrogate models for multiphase flow numerical simulation models. In this regard, we conducted a comparative analysis to select the optimal modeling technique and parameter optimization algorithm for surrogate models in DNAPL-contaminated aquifer remediation strategy optimization problems. Latin hypercube sampling method was used to collect data in the feasible region of input variables. Surrogate models were developed using radial basis function artificial neural network, Kriging, and support vector regression. Genetic algorithm, self-adaptive particle swarm optimization (PSO), and self-adaptive PSO based on simulated annealing (SA) were applied to optimize the parameters of the surrogate model. Results showed that the optimal surrogate model was Kriging model with the parameters obtained by self-adaptive PSO based on SA. Relative errors of the contaminant removal rates between the optimal surrogate model and simulation model for 100 validation samples were lower than 3.5%, clearly confirming the optimal performance of the proposed model. Finally, computation of run time enabled us to conclude that the surrogate model presented in this article was capable of considerably reducing computational burden of simulation optimization processes." @default.
- W2240491010 created "2016-06-24" @default.
- W2240491010 creator A5010213056 @default.
- W2240491010 creator A5041535596 @default.
- W2240491010 creator A5049184326 @default.
- W2240491010 creator A5064426859 @default.
- W2240491010 date "2015-12-01" @default.
- W2240491010 modified "2023-10-06" @default.
- W2240491010 title "Selecting Parameter-Optimized Surrogate Models in DNAPL-Contaminated Aquifer Remediation Strategies" @default.
- W2240491010 cites W1756031276 @default.
- W2240491010 cites W1964224785 @default.
- W2240491010 cites W1964357740 @default.
- W2240491010 cites W1969895389 @default.
- W2240491010 cites W1976482237 @default.
- W2240491010 cites W1984179956 @default.
- W2240491010 cites W1996193273 @default.
- W2240491010 cites W2003839735 @default.
- W2240491010 cites W2012295213 @default.
- W2240491010 cites W2016354158 @default.
- W2240491010 cites W2018044188 @default.
- W2240491010 cites W2020775799 @default.
- W2240491010 cites W2020798301 @default.
- W2240491010 cites W2021655555 @default.
- W2240491010 cites W2022754816 @default.
- W2240491010 cites W2031310127 @default.
- W2240491010 cites W2035134507 @default.
- W2240491010 cites W2039214527 @default.
- W2240491010 cites W2047883339 @default.
- W2240491010 cites W2065859203 @default.
- W2240491010 cites W2065893901 @default.
- W2240491010 cites W2109816291 @default.
- W2240491010 cites W2138813257 @default.
- W2240491010 cites W2160011235 @default.
- W2240491010 cites W2183579466 @default.
- W2240491010 doi "https://doi.org/10.1089/ees.2015.0055" @default.
- W2240491010 hasPublicationYear "2015" @default.
- W2240491010 type Work @default.
- W2240491010 sameAs 2240491010 @default.
- W2240491010 citedByCount "37" @default.
- W2240491010 countsByYear W22404910102016 @default.
- W2240491010 countsByYear W22404910102017 @default.
- W2240491010 countsByYear W22404910102018 @default.
- W2240491010 countsByYear W22404910102019 @default.
- W2240491010 countsByYear W22404910102020 @default.
- W2240491010 countsByYear W22404910102021 @default.
- W2240491010 countsByYear W22404910102022 @default.
- W2240491010 countsByYear W22404910102023 @default.
- W2240491010 crossrefType "journal-article" @default.
- W2240491010 hasAuthorship W2240491010A5010213056 @default.
- W2240491010 hasAuthorship W2240491010A5041535596 @default.
- W2240491010 hasAuthorship W2240491010A5049184326 @default.
- W2240491010 hasAuthorship W2240491010A5064426859 @default.
- W2240491010 hasConcept C105795698 @default.
- W2240491010 hasConcept C119857082 @default.
- W2240491010 hasConcept C126255220 @default.
- W2240491010 hasConcept C126980161 @default.
- W2240491010 hasConcept C131675550 @default.
- W2240491010 hasConcept C19499675 @default.
- W2240491010 hasConcept C20820323 @default.
- W2240491010 hasConcept C33923547 @default.
- W2240491010 hasConcept C41008148 @default.
- W2240491010 hasConcept C81692654 @default.
- W2240491010 hasConcept C85617194 @default.
- W2240491010 hasConceptScore W2240491010C105795698 @default.
- W2240491010 hasConceptScore W2240491010C119857082 @default.
- W2240491010 hasConceptScore W2240491010C126255220 @default.
- W2240491010 hasConceptScore W2240491010C126980161 @default.
- W2240491010 hasConceptScore W2240491010C131675550 @default.
- W2240491010 hasConceptScore W2240491010C19499675 @default.
- W2240491010 hasConceptScore W2240491010C20820323 @default.
- W2240491010 hasConceptScore W2240491010C33923547 @default.
- W2240491010 hasConceptScore W2240491010C41008148 @default.
- W2240491010 hasConceptScore W2240491010C81692654 @default.
- W2240491010 hasConceptScore W2240491010C85617194 @default.
- W2240491010 hasIssue "12" @default.
- W2240491010 hasLocation W22404910101 @default.
- W2240491010 hasOpenAccess W2240491010 @default.
- W2240491010 hasPrimaryLocation W22404910101 @default.
- W2240491010 hasRelatedWork W1990724965 @default.
- W2240491010 hasRelatedWork W2020701469 @default.
- W2240491010 hasRelatedWork W2167963739 @default.
- W2240491010 hasRelatedWork W2202349485 @default.
- W2240491010 hasRelatedWork W2354835600 @default.
- W2240491010 hasRelatedWork W2375320626 @default.
- W2240491010 hasRelatedWork W2800575077 @default.
- W2240491010 hasRelatedWork W2895946267 @default.
- W2240491010 hasRelatedWork W2900837648 @default.
- W2240491010 hasRelatedWork W3042131354 @default.
- W2240491010 hasVolume "32" @default.
- W2240491010 isParatext "false" @default.
- W2240491010 isRetracted "false" @default.
- W2240491010 magId "2240491010" @default.
- W2240491010 workType "article" @default.