Matches in SemOpenAlex for { <https://semopenalex.org/work/W2242065997> ?p ?o ?g. }
- W2242065997 abstract "Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases." @default.
- W2242065997 created "2016-06-24" @default.
- W2242065997 creator A5021487267 @default.
- W2242065997 creator A5037017424 @default.
- W2242065997 creator A5050985047 @default.
- W2242065997 creator A5090531329 @default.
- W2242065997 date "2015-11-16" @default.
- W2242065997 modified "2023-09-23" @default.
- W2242065997 title "Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition" @default.
- W2242065997 cites W1513013675 @default.
- W2242065997 cites W1963932623 @default.
- W2242065997 cites W1964810009 @default.
- W2242065997 cites W1986736933 @default.
- W2242065997 cites W1992405901 @default.
- W2242065997 cites W2001406142 @default.
- W2242065997 cites W2001519147 @default.
- W2242065997 cites W2027805700 @default.
- W2242065997 cites W2032768707 @default.
- W2242065997 cites W2033419168 @default.
- W2242065997 cites W2067703582 @default.
- W2242065997 cites W2082855665 @default.
- W2242065997 cites W2084716923 @default.
- W2242065997 cites W2088900896 @default.
- W2242065997 cites W2093922090 @default.
- W2242065997 cites W2097486709 @default.
- W2242065997 cites W2097622337 @default.
- W2242065997 cites W2100556411 @default.
- W2242065997 cites W2108428911 @default.
- W2242065997 cites W2116019577 @default.
- W2242065997 cites W2117553576 @default.
- W2242065997 cites W2120100419 @default.
- W2242065997 cites W2121647436 @default.
- W2242065997 cites W2129812935 @default.
- W2242065997 cites W2130951397 @default.
- W2242065997 cites W2136860609 @default.
- W2242065997 cites W2137659841 @default.
- W2242065997 cites W2138451337 @default.
- W2242065997 cites W2145962650 @default.
- W2242065997 cites W2146076056 @default.
- W2242065997 cites W2153636395 @default.
- W2242065997 cites W2157785665 @default.
- W2242065997 cites W2163808566 @default.
- W2242065997 cites W2165731615 @default.
- W2242065997 cites W2171534739 @default.
- W2242065997 cites W2906621894 @default.
- W2242065997 cites W3022380717 @default.
- W2242065997 doi "https://doi.org/10.1371/journal.pone.0142403" @default.
- W2242065997 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4646696" @default.
- W2242065997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26571112" @default.
- W2242065997 hasPublicationYear "2015" @default.
- W2242065997 type Work @default.
- W2242065997 sameAs 2242065997 @default.
- W2242065997 citedByCount "3" @default.
- W2242065997 countsByYear W22420659972017 @default.
- W2242065997 countsByYear W22420659972020 @default.
- W2242065997 crossrefType "journal-article" @default.
- W2242065997 hasAuthorship W2242065997A5021487267 @default.
- W2242065997 hasAuthorship W2242065997A5037017424 @default.
- W2242065997 hasAuthorship W2242065997A5050985047 @default.
- W2242065997 hasAuthorship W2242065997A5090531329 @default.
- W2242065997 hasBestOaLocation W22420659971 @default.
- W2242065997 hasConcept C106487976 @default.
- W2242065997 hasConcept C114614502 @default.
- W2242065997 hasConcept C121332964 @default.
- W2242065997 hasConcept C124066611 @default.
- W2242065997 hasConcept C138885662 @default.
- W2242065997 hasConcept C144024400 @default.
- W2242065997 hasConcept C153180895 @default.
- W2242065997 hasConcept C154771677 @default.
- W2242065997 hasConcept C154945302 @default.
- W2242065997 hasConcept C158693339 @default.
- W2242065997 hasConcept C159985019 @default.
- W2242065997 hasConcept C163716315 @default.
- W2242065997 hasConcept C164226766 @default.
- W2242065997 hasConcept C192562407 @default.
- W2242065997 hasConcept C2776401178 @default.
- W2242065997 hasConcept C2777212361 @default.
- W2242065997 hasConcept C2779304628 @default.
- W2242065997 hasConcept C31510193 @default.
- W2242065997 hasConcept C33923547 @default.
- W2242065997 hasConcept C36289849 @default.
- W2242065997 hasConcept C41008148 @default.
- W2242065997 hasConcept C41895202 @default.
- W2242065997 hasConcept C42355184 @default.
- W2242065997 hasConcept C56372850 @default.
- W2242065997 hasConcept C62520636 @default.
- W2242065997 hasConcept C77637269 @default.
- W2242065997 hasConcept C97931131 @default.
- W2242065997 hasConceptScore W2242065997C106487976 @default.
- W2242065997 hasConceptScore W2242065997C114614502 @default.
- W2242065997 hasConceptScore W2242065997C121332964 @default.
- W2242065997 hasConceptScore W2242065997C124066611 @default.
- W2242065997 hasConceptScore W2242065997C138885662 @default.
- W2242065997 hasConceptScore W2242065997C144024400 @default.
- W2242065997 hasConceptScore W2242065997C153180895 @default.
- W2242065997 hasConceptScore W2242065997C154771677 @default.
- W2242065997 hasConceptScore W2242065997C154945302 @default.
- W2242065997 hasConceptScore W2242065997C158693339 @default.
- W2242065997 hasConceptScore W2242065997C159985019 @default.
- W2242065997 hasConceptScore W2242065997C163716315 @default.