Matches in SemOpenAlex for { <https://semopenalex.org/work/W2242912509> ?p ?o ?g. }
- W2242912509 endingPage "16076" @default.
- W2242912509 startingPage "16059" @default.
- W2242912509 abstract "Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction. Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction." @default.
- W2242912509 created "2016-06-24" @default.
- W2242912509 creator A5002024266 @default.
- W2242912509 creator A5004350558 @default.
- W2242912509 creator A5020138514 @default.
- W2242912509 creator A5021236744 @default.
- W2242912509 creator A5023044832 @default.
- W2242912509 creator A5055670497 @default.
- W2242912509 creator A5070225100 @default.
- W2242912509 date "2015-06-01" @default.
- W2242912509 modified "2023-10-16" @default.
- W2242912509 title "Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α)" @default.
- W2242912509 cites W1665938856 @default.
- W2242912509 cites W1975625687 @default.
- W2242912509 cites W1975828757 @default.
- W2242912509 cites W1983465246 @default.
- W2242912509 cites W1991096049 @default.
- W2242912509 cites W1992046875 @default.
- W2242912509 cites W1992619847 @default.
- W2242912509 cites W2003607161 @default.
- W2242912509 cites W2019106516 @default.
- W2242912509 cites W2021631452 @default.
- W2242912509 cites W2034175329 @default.
- W2242912509 cites W2035006578 @default.
- W2242912509 cites W2038317187 @default.
- W2242912509 cites W2048948765 @default.
- W2242912509 cites W2053510668 @default.
- W2242912509 cites W2060508200 @default.
- W2242912509 cites W2066930666 @default.
- W2242912509 cites W2069037616 @default.
- W2242912509 cites W2076941017 @default.
- W2242912509 cites W2077645437 @default.
- W2242912509 cites W2077834313 @default.
- W2242912509 cites W2078575160 @default.
- W2242912509 cites W2087406283 @default.
- W2242912509 cites W2097681801 @default.
- W2242912509 cites W2106978702 @default.
- W2242912509 cites W2110894819 @default.
- W2242912509 cites W2113139949 @default.
- W2242912509 cites W2116350182 @default.
- W2242912509 cites W2120549411 @default.
- W2242912509 cites W2122073743 @default.
- W2242912509 cites W2122161726 @default.
- W2242912509 cites W2125121177 @default.
- W2242912509 cites W2129451233 @default.
- W2242912509 cites W2135560386 @default.
- W2242912509 cites W2138134399 @default.
- W2242912509 cites W2138806361 @default.
- W2242912509 cites W2144600435 @default.
- W2242912509 cites W2152101492 @default.
- W2242912509 cites W2153975084 @default.
- W2242912509 cites W2154079731 @default.
- W2242912509 cites W2156003677 @default.
- W2242912509 cites W2156090275 @default.
- W2242912509 cites W2157860216 @default.
- W2242912509 cites W2165722123 @default.
- W2242912509 cites W2166524981 @default.
- W2242912509 cites W2167361230 @default.
- W2242912509 cites W4211127285 @default.
- W2242912509 cites W4252021281 @default.
- W2242912509 doi "https://doi.org/10.1074/jbc.m114.590653" @default.
- W2242912509 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4481209" @default.
- W2242912509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25987562" @default.
- W2242912509 hasPublicationYear "2015" @default.
- W2242912509 type Work @default.
- W2242912509 sameAs 2242912509 @default.
- W2242912509 citedByCount "21" @default.
- W2242912509 countsByYear W22429125092015 @default.
- W2242912509 countsByYear W22429125092016 @default.
- W2242912509 countsByYear W22429125092017 @default.
- W2242912509 countsByYear W22429125092019 @default.
- W2242912509 countsByYear W22429125092020 @default.
- W2242912509 countsByYear W22429125092021 @default.
- W2242912509 countsByYear W22429125092022 @default.
- W2242912509 countsByYear W22429125092023 @default.
- W2242912509 crossrefType "journal-article" @default.
- W2242912509 hasAuthorship W2242912509A5002024266 @default.
- W2242912509 hasAuthorship W2242912509A5004350558 @default.
- W2242912509 hasAuthorship W2242912509A5020138514 @default.
- W2242912509 hasAuthorship W2242912509A5021236744 @default.
- W2242912509 hasAuthorship W2242912509A5023044832 @default.
- W2242912509 hasAuthorship W2242912509A5055670497 @default.
- W2242912509 hasAuthorship W2242912509A5070225100 @default.
- W2242912509 hasBestOaLocation W22429125091 @default.
- W2242912509 hasConcept C126322002 @default.
- W2242912509 hasConcept C127078168 @default.
- W2242912509 hasConcept C134018914 @default.
- W2242912509 hasConcept C170493617 @default.
- W2242912509 hasConcept C171089720 @default.
- W2242912509 hasConcept C187345961 @default.
- W2242912509 hasConcept C2776816829 @default.
- W2242912509 hasConcept C2777229759 @default.
- W2242912509 hasConcept C2779959927 @default.
- W2242912509 hasConcept C28859421 @default.
- W2242912509 hasConcept C55493867 @default.
- W2242912509 hasConcept C71924100 @default.
- W2242912509 hasConcept C86803240 @default.
- W2242912509 hasConcept C88045685 @default.