Matches in SemOpenAlex for { <https://semopenalex.org/work/W2243320457> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2243320457 abstract "The two problems in reconstructability analysis, abbreviated as RA, are referred to as the reconstructability problem and the identification problem. The former relates to the process of reconstructing a given system under a given criterion from the knowledge of its subsystems and, during this process, identifying those subsystems that are important in the reconstruction. The latter allows the identification of an unknown system from the knowledge of its subsystems. The advent of RA has intensified the research efforts on system studies. The objective of this research is to study the process of system reconstruction for general systems and apply it in the context of automated knowledge acquisition from databases. First, we describe basic concepts in reconstructability theory and machine learning. We then modify existing results in reconstructability theory for probabilistic and selection systems in order to generate better algorithms for determining the unbiased reconstruction and reconstruction families in the wake of new developments such as k-systems and the use of independent information. Further, we extend RA methodology for possibilistic systems using only partial information. An algorithm is proposed to compute the unbiased reconstruction, and the reconstruction families are identified as a set of max-min fuzzy relation equations. Furthermore, we define a new measure of the cognitive contents of a rule, referred to as the K-measure. Based on the K-measure, we introduce a new approach for automated knowledge acquisition from databases. Based on RA, the reconstructability approach to generalized rule induction from databases should work for most data covered by the framework of RA and k-systems. In particular, this approach is appropriate for expert-systems-like domains where the data is intrinsically nominal. Finally, we summarize our results and discuss the potentials for further research." @default.
- W2243320457 created "2016-06-24" @default.
- W2243320457 creator A5060988997 @default.
- W2243320457 date "2022-06-14" @default.
- W2243320457 modified "2023-10-07" @default.
- W2243320457 title "Reconstructability Theory for General Systems and Its Application to Automated Rule Learning." @default.
- W2243320457 cites W14616162 @default.
- W2243320457 cites W1556265791 @default.
- W2243320457 cites W1964518441 @default.
- W2243320457 cites W1968833464 @default.
- W2243320457 cites W1969005071 @default.
- W2243320457 cites W1983661866 @default.
- W2243320457 cites W199129542 @default.
- W2243320457 cites W2019588993 @default.
- W2243320457 cites W2019950953 @default.
- W2243320457 cites W2020484683 @default.
- W2243320457 cites W2032558547 @default.
- W2243320457 cites W2050291696 @default.
- W2243320457 cites W2054903453 @default.
- W2243320457 cites W2085294315 @default.
- W2243320457 cites W2086196970 @default.
- W2243320457 cites W2099321136 @default.
- W2243320457 cites W2136000097 @default.
- W2243320457 cites W2330022088 @default.
- W2243320457 doi "https://doi.org/10.31390/gradschool_disstheses.5678" @default.
- W2243320457 hasPublicationYear "2022" @default.
- W2243320457 type Work @default.
- W2243320457 sameAs 2243320457 @default.
- W2243320457 citedByCount "0" @default.
- W2243320457 crossrefType "dissertation" @default.
- W2243320457 hasAuthorship W2243320457A5060988997 @default.
- W2243320457 hasBestOaLocation W22433204571 @default.
- W2243320457 hasConcept C111919701 @default.
- W2243320457 hasConcept C116834253 @default.
- W2243320457 hasConcept C119857082 @default.
- W2243320457 hasConcept C124101348 @default.
- W2243320457 hasConcept C151730666 @default.
- W2243320457 hasConcept C154945302 @default.
- W2243320457 hasConcept C177264268 @default.
- W2243320457 hasConcept C199360897 @default.
- W2243320457 hasConcept C2779343474 @default.
- W2243320457 hasConcept C2780009758 @default.
- W2243320457 hasConcept C41008148 @default.
- W2243320457 hasConcept C49937458 @default.
- W2243320457 hasConcept C59822182 @default.
- W2243320457 hasConcept C80444323 @default.
- W2243320457 hasConcept C86803240 @default.
- W2243320457 hasConcept C98045186 @default.
- W2243320457 hasConceptScore W2243320457C111919701 @default.
- W2243320457 hasConceptScore W2243320457C116834253 @default.
- W2243320457 hasConceptScore W2243320457C119857082 @default.
- W2243320457 hasConceptScore W2243320457C124101348 @default.
- W2243320457 hasConceptScore W2243320457C151730666 @default.
- W2243320457 hasConceptScore W2243320457C154945302 @default.
- W2243320457 hasConceptScore W2243320457C177264268 @default.
- W2243320457 hasConceptScore W2243320457C199360897 @default.
- W2243320457 hasConceptScore W2243320457C2779343474 @default.
- W2243320457 hasConceptScore W2243320457C2780009758 @default.
- W2243320457 hasConceptScore W2243320457C41008148 @default.
- W2243320457 hasConceptScore W2243320457C49937458 @default.
- W2243320457 hasConceptScore W2243320457C59822182 @default.
- W2243320457 hasConceptScore W2243320457C80444323 @default.
- W2243320457 hasConceptScore W2243320457C86803240 @default.
- W2243320457 hasConceptScore W2243320457C98045186 @default.
- W2243320457 hasLocation W22433204571 @default.
- W2243320457 hasOpenAccess W2243320457 @default.
- W2243320457 hasPrimaryLocation W22433204571 @default.
- W2243320457 hasRelatedWork W1497573972 @default.
- W2243320457 hasRelatedWork W1846253165 @default.
- W2243320457 hasRelatedWork W2033895922 @default.
- W2243320457 hasRelatedWork W2071659383 @default.
- W2243320457 hasRelatedWork W2382043075 @default.
- W2243320457 hasRelatedWork W2387011115 @default.
- W2243320457 hasRelatedWork W2808854221 @default.
- W2243320457 hasRelatedWork W2809151339 @default.
- W2243320457 hasRelatedWork W4255628145 @default.
- W2243320457 hasRelatedWork W4255837520 @default.
- W2243320457 isParatext "false" @default.
- W2243320457 isRetracted "false" @default.
- W2243320457 magId "2243320457" @default.
- W2243320457 workType "dissertation" @default.