Matches in SemOpenAlex for { <https://semopenalex.org/work/W2243379720> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2243379720 abstract "We say that binary relation E on a space X is a clopen graph on X iff E is symmetric and irreflexive and clopen relative to X x X minus its diagonal. Equivalently for distinct x, y in X there are open sets U,V with (x,y) in U x V and either U x V a subset of E or U x V a subset of E complement. For clopen graphs E_1 and E_2 on the Baire space (omega^omega) we say that E_1 continuously reduces to E_2 iff there is a continuous map f from the Baire space to itself such that for [(x,y) in E_1 iff (f(x),f(y)) in E_2 ] for distinct x,y. Note that f need not be one-to-one but there should be no edges in the preimage of a point. If f is a homeomorphism to its image, then we say that E_1 continuously embeds into E_2. Theorem. There does not exist countably many clopen graphs on the Baire space such that every clopen graph on the Baire space continuously reduces to one of them. However there does exists omega_1 clopen graphs on such that every clopen graph continuously embedds into one of them. This answers a question of Stefan Geschke. Latex2e: 9 pages Latest version at: www.math.wisc.edu/~miller" @default.
- W2243379720 created "2016-06-24" @default.
- W2243379720 creator A5062397219 @default.
- W2243379720 date "2012-10-31" @default.
- W2243379720 modified "2023-09-27" @default.
- W2243379720 title "A hierarchy of clopen graphs on the Baire space" @default.
- W2243379720 cites W2042456363 @default.
- W2243379720 cites W2067016370 @default.
- W2243379720 hasPublicationYear "2012" @default.
- W2243379720 type Work @default.
- W2243379720 sameAs 2243379720 @default.
- W2243379720 citedByCount "0" @default.
- W2243379720 crossrefType "posted-content" @default.
- W2243379720 hasAuthorship W2243379720A5062397219 @default.
- W2243379720 hasConcept C114614502 @default.
- W2243379720 hasConcept C118615104 @default.
- W2243379720 hasConcept C33923547 @default.
- W2243379720 hasConceptScore W2243379720C114614502 @default.
- W2243379720 hasConceptScore W2243379720C118615104 @default.
- W2243379720 hasConceptScore W2243379720C33923547 @default.
- W2243379720 hasLocation W22433797201 @default.
- W2243379720 hasOpenAccess W2243379720 @default.
- W2243379720 hasPrimaryLocation W22433797201 @default.
- W2243379720 hasRelatedWork W1507489030 @default.
- W2243379720 hasRelatedWork W1580212176 @default.
- W2243379720 hasRelatedWork W1972911853 @default.
- W2243379720 hasRelatedWork W2000360939 @default.
- W2243379720 hasRelatedWork W2007115718 @default.
- W2243379720 hasRelatedWork W2042057510 @default.
- W2243379720 hasRelatedWork W2042748774 @default.
- W2243379720 hasRelatedWork W2056925769 @default.
- W2243379720 hasRelatedWork W2090593718 @default.
- W2243379720 hasRelatedWork W2093890105 @default.
- W2243379720 hasRelatedWork W2094673677 @default.
- W2243379720 hasRelatedWork W2104279093 @default.
- W2243379720 hasRelatedWork W2106942452 @default.
- W2243379720 hasRelatedWork W2309716119 @default.
- W2243379720 hasRelatedWork W2322513580 @default.
- W2243379720 hasRelatedWork W2488305695 @default.
- W2243379720 hasRelatedWork W2558610657 @default.
- W2243379720 hasRelatedWork W2794720733 @default.
- W2243379720 hasRelatedWork W2944901598 @default.
- W2243379720 hasRelatedWork W2288713241 @default.
- W2243379720 isParatext "false" @default.
- W2243379720 isRetracted "false" @default.
- W2243379720 magId "2243379720" @default.
- W2243379720 workType "article" @default.