Matches in SemOpenAlex for { <https://semopenalex.org/work/W2243465180> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2243465180 abstract "This thesis is divided into two parts.In the first part (Chapters 1, 2, 3) various Robinson-Schensted (RS) algorithms are discussed. An introduction to the classical RS algorithm is presented, including the symmetry property, and the result of the algorithm Doob h-transforming the kernel from the Pieri rule of Schur functions h when taking a random word [O'C03a]. This is followed by the extension to a q-weighted version that has a branching structure, which can be alternatively viewed as a randomisation of the classical algorithm. The q-weighted RS algorithm is related to the q-Whittaker functions in the same way as the classical algorithm is to the Schur functions. That is, when taking a random word, the algorithm Doob h-transforms the Hamiltonian of the quantum Toda lattice where h are the q-Whittaker functions. Moreover, it can also be applied to model the q-totally asymmetric simple exclusion process introduced in [SW98]. Furthermore, the q-RS algorithm also enjoys a symmetry property analogous to that of the symmetry property of the classical algorithm. This is proved by extending Fomin's growth diagram technique [Fom79, Fom88, Fom94, Fom95], which covers a family of the so-called branching insertion algorithms, including the row insertion proposed in [BP13].In the second part (Chapters 4, 5) we work with quantum stochastic analysis. First we introduce the basic elements in quantum stochastic analysis, including the quantum probability space, the momentum and position Brownian motions [CH77], and the relation between rotations and angular momenta via the second quantisation, which is generalised to a family of rotation-like operators [HP15a]. Then we discuss a family of unitary quantum causal stochastic double product integrals E, which are expected to be the second quantisation of the continuous limit W of a discrete double product of aforementioned rotation-like operators. In one special case, the operator E is related to the quantum Levy stochastic area, while in another case it is related to the quantum 2-d Bessel process. The explicit formula for the kernel of W is obtained by enumerating linear extensions of partial orderings related to a path model, and the combinatorial aspect is closely related to generalisations of the Catalan numbers and the Dyck paths. Furthermore W is shown to be unitary using integrals of the Bessel functions." @default.
- W2243465180 created "2016-06-24" @default.
- W2243465180 creator A5075980976 @default.
- W2243465180 date "2015-01-01" @default.
- W2243465180 modified "2023-09-27" @default.
- W2243465180 title "Robinson-Schensted algorithms and quantum stochastic double product integrals" @default.
- W2243465180 hasPublicationYear "2015" @default.
- W2243465180 type Work @default.
- W2243465180 sameAs 2243465180 @default.
- W2243465180 citedByCount "0" @default.
- W2243465180 crossrefType "dissertation" @default.
- W2243465180 hasAuthorship W2243465180A5075980976 @default.
- W2243465180 hasConcept C11413529 @default.
- W2243465180 hasConcept C114614502 @default.
- W2243465180 hasConcept C118615104 @default.
- W2243465180 hasConcept C121332964 @default.
- W2243465180 hasConcept C126255220 @default.
- W2243465180 hasConcept C130787639 @default.
- W2243465180 hasConcept C137019171 @default.
- W2243465180 hasConcept C33923547 @default.
- W2243465180 hasConcept C62520636 @default.
- W2243465180 hasConcept C84114770 @default.
- W2243465180 hasConceptScore W2243465180C11413529 @default.
- W2243465180 hasConceptScore W2243465180C114614502 @default.
- W2243465180 hasConceptScore W2243465180C118615104 @default.
- W2243465180 hasConceptScore W2243465180C121332964 @default.
- W2243465180 hasConceptScore W2243465180C126255220 @default.
- W2243465180 hasConceptScore W2243465180C130787639 @default.
- W2243465180 hasConceptScore W2243465180C137019171 @default.
- W2243465180 hasConceptScore W2243465180C33923547 @default.
- W2243465180 hasConceptScore W2243465180C62520636 @default.
- W2243465180 hasConceptScore W2243465180C84114770 @default.
- W2243465180 hasLocation W22434651801 @default.
- W2243465180 hasOpenAccess W2243465180 @default.
- W2243465180 hasPrimaryLocation W22434651801 @default.
- W2243465180 hasRelatedWork W1486203286 @default.
- W2243465180 hasRelatedWork W1602210041 @default.
- W2243465180 hasRelatedWork W1818117297 @default.
- W2243465180 hasRelatedWork W2020209088 @default.
- W2243465180 hasRelatedWork W2031216497 @default.
- W2243465180 hasRelatedWork W2079244813 @default.
- W2243465180 hasRelatedWork W2143619965 @default.
- W2243465180 hasRelatedWork W2162100904 @default.
- W2243465180 hasRelatedWork W2463313108 @default.
- W2243465180 hasRelatedWork W2766512868 @default.
- W2243465180 hasRelatedWork W2804137808 @default.
- W2243465180 hasRelatedWork W2887867217 @default.
- W2243465180 hasRelatedWork W2949318619 @default.
- W2243465180 hasRelatedWork W2950647079 @default.
- W2243465180 hasRelatedWork W2962968674 @default.
- W2243465180 hasRelatedWork W2963760146 @default.
- W2243465180 hasRelatedWork W2997874892 @default.
- W2243465180 hasRelatedWork W3100235680 @default.
- W2243465180 hasRelatedWork W3119489473 @default.
- W2243465180 hasRelatedWork W3213194265 @default.
- W2243465180 isParatext "false" @default.
- W2243465180 isRetracted "false" @default.
- W2243465180 magId "2243465180" @default.
- W2243465180 workType "dissertation" @default.