Matches in SemOpenAlex for { <https://semopenalex.org/work/W2243935707> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2243935707 abstract "This dissertation discusses three problems from different areas of medical research and their machine learning solutions. Each solution is a distinct type of decision support system. They show three common properties: personalized health care decision support, reduction of the use of medical resources, and improvement of outcomes. The first decision support system assists individual hospital selection. This system can help a user make the best decision in terms of the combination of mortality, complication, and travel distance. Both machine learning and optimization techniques are utilized in this type of decision support system. Machine learning methods, such as Support Vector Machines, learn a decision function. Next, the function is transformed into an objective function and then optimization methods are used to find the values of decision variables to reach the desired outcome with the most confidence. The second decision support system assists diagnostic decisions in a sequential decision-making setting by finding the most promising tests and suggesting a diagnosis. The system can speed up the diagnostic process, reduce overuse of medical tests, save costs, and improve the accuracy of diagnosis. In this study, the system finds the test most likely to confirm a diagnosis based on the pre-test probability computed from the patient's information including symptoms and the results of previous tests. If the patient's disease post-test probability is higher than the treatment threshold, a diagnostic decision will be made, and vice versa. Otherwise, the patient needs more tests to help make a decision. The system will then recommend the next optimal test and repeat the same process. The third decision support system recommends the best lifestyle changes for an individual to lower the risk of cardiovascular disease (CVD). As in the hospital recommendation system, machine learning and optimization are combined to capture the relationship between lifestyle and CVD, and then generate recommendations based on individual factors including preference and physical condition. The results demonstrate several recommendation strategies: a whole plan of lifestyle changes, a package of n lifestyle changes, and the compensatory plan (the plan that compensates for unwanted lifestyle changes or real-world limitations)." @default.
- W2243935707 created "2016-06-24" @default.
- W2243935707 creator A5031033430 @default.
- W2243935707 creator A5037575522 @default.
- W2243935707 date "2009-01-01" @default.
- W2243935707 modified "2023-09-27" @default.
- W2243935707 title "Medical decision support systems based on machine learning methods" @default.
- W2243935707 hasPublicationYear "2009" @default.
- W2243935707 type Work @default.
- W2243935707 sameAs 2243935707 @default.
- W2243935707 citedByCount "0" @default.
- W2243935707 crossrefType "journal-article" @default.
- W2243935707 hasAuthorship W2243935707A5031033430 @default.
- W2243935707 hasAuthorship W2243935707A5037575522 @default.
- W2243935707 hasConcept C105795698 @default.
- W2243935707 hasConcept C107327155 @default.
- W2243935707 hasConcept C119857082 @default.
- W2243935707 hasConcept C12267149 @default.
- W2243935707 hasConcept C150325174 @default.
- W2243935707 hasConcept C151730666 @default.
- W2243935707 hasConcept C154945302 @default.
- W2243935707 hasConcept C186116695 @default.
- W2243935707 hasConcept C2777267654 @default.
- W2243935707 hasConcept C33923547 @default.
- W2243935707 hasConcept C41008148 @default.
- W2243935707 hasConcept C63527458 @default.
- W2243935707 hasConcept C84525736 @default.
- W2243935707 hasConcept C86803240 @default.
- W2243935707 hasConceptScore W2243935707C105795698 @default.
- W2243935707 hasConceptScore W2243935707C107327155 @default.
- W2243935707 hasConceptScore W2243935707C119857082 @default.
- W2243935707 hasConceptScore W2243935707C12267149 @default.
- W2243935707 hasConceptScore W2243935707C150325174 @default.
- W2243935707 hasConceptScore W2243935707C151730666 @default.
- W2243935707 hasConceptScore W2243935707C154945302 @default.
- W2243935707 hasConceptScore W2243935707C186116695 @default.
- W2243935707 hasConceptScore W2243935707C2777267654 @default.
- W2243935707 hasConceptScore W2243935707C33923547 @default.
- W2243935707 hasConceptScore W2243935707C41008148 @default.
- W2243935707 hasConceptScore W2243935707C63527458 @default.
- W2243935707 hasConceptScore W2243935707C84525736 @default.
- W2243935707 hasConceptScore W2243935707C86803240 @default.
- W2243935707 hasLocation W22439357071 @default.
- W2243935707 hasOpenAccess W2243935707 @default.
- W2243935707 hasPrimaryLocation W22439357071 @default.
- W2243935707 hasRelatedWork W1661289153 @default.
- W2243935707 hasRelatedWork W1966430651 @default.
- W2243935707 hasRelatedWork W1967029942 @default.
- W2243935707 hasRelatedWork W1972144980 @default.
- W2243935707 hasRelatedWork W1983146767 @default.
- W2243935707 hasRelatedWork W2106053169 @default.
- W2243935707 hasRelatedWork W2108323282 @default.
- W2243935707 hasRelatedWork W2148681431 @default.
- W2243935707 hasRelatedWork W2183231024 @default.
- W2243935707 hasRelatedWork W2329983206 @default.
- W2243935707 hasRelatedWork W2405952930 @default.
- W2243935707 hasRelatedWork W2533141249 @default.
- W2243935707 hasRelatedWork W2540844077 @default.
- W2243935707 hasRelatedWork W2552678868 @default.
- W2243935707 hasRelatedWork W3031710776 @default.
- W2243935707 hasRelatedWork W3112118241 @default.
- W2243935707 hasRelatedWork W3153175299 @default.
- W2243935707 hasRelatedWork W3170436335 @default.
- W2243935707 hasRelatedWork W3201486216 @default.
- W2243935707 hasRelatedWork W3092334783 @default.
- W2243935707 isParatext "false" @default.
- W2243935707 isRetracted "false" @default.
- W2243935707 magId "2243935707" @default.
- W2243935707 workType "article" @default.