Matches in SemOpenAlex for { <https://semopenalex.org/work/W2244071043> ?p ?o ?g. }
- W2244071043 endingPage "319" @default.
- W2244071043 startingPage "311" @default.
- W2244071043 abstract "Abstract In this research work, for the first time, the adaptive neuro fuzzy inference system (ANFIS) is employed to propose an approach for identifying the most significant parameters for prediction of daily dew point temperature ( T dew ). The ANFIS process for variable selection is implemented, which includes a number of ways to recognize the parameters offering favorable predictions. According to the physical factors influencing the dew formation, 8 variables of daily minimum, maximum and average air temperatures ( T min , T max and T avg ), relative humidity ( R h ), atmospheric pressure ( P ), water vapor pressure ( V P ), sunshine hour ( n ) and horizontal global solar radiation ( H ) are considered to investigate their effects on T dew . The used data include 7 years daily measured data of two Iranian cities located in the central and south central parts of the country. The results indicate that despite climate difference between the considered case studies, for both stations, V P is the most influential variable while R h is the least relevant element. Furthermore, the combination of T min and V P is recognized as the most influential set to predict T dew . The conducted examinations show that there is a remarkable difference between the errors achieved for most and less relevant input parameters, which highlights the importance of appropriate selection of input parameters. The use of more than two inputs may not be advisable and appropriate; thus, considering the most relevant combination of 2 parameters would be more suitable to achieve higher accuracy and lower complexity in predictions. In the final step, comparisons between the predictions of the ANFIS model using the selected inputs and other soft computing techniques demonstrate that ANFIS has a higher accuracy to predict daily dew point temperature." @default.
- W2244071043 created "2016-06-24" @default.
- W2244071043 creator A5003091988 @default.
- W2244071043 creator A5013258204 @default.
- W2244071043 creator A5051973071 @default.
- W2244071043 creator A5076204864 @default.
- W2244071043 creator A5086550972 @default.
- W2244071043 date "2016-03-01" @default.
- W2244071043 modified "2023-09-27" @default.
- W2244071043 title "Using ANFIS for selection of more relevant parameters to predict dew point temperature" @default.
- W2244071043 cites W1179140510 @default.
- W2244071043 cites W1512948955 @default.
- W2244071043 cites W1963705811 @default.
- W2244071043 cites W1980750393 @default.
- W2244071043 cites W1985804834 @default.
- W2244071043 cites W1992616163 @default.
- W2244071043 cites W2004577376 @default.
- W2244071043 cites W2011142156 @default.
- W2244071043 cites W2013429679 @default.
- W2244071043 cites W2019207321 @default.
- W2244071043 cites W2054793686 @default.
- W2244071043 cites W2057897281 @default.
- W2244071043 cites W2064901127 @default.
- W2244071043 cites W2065645571 @default.
- W2244071043 cites W2073439822 @default.
- W2244071043 cites W2073587500 @default.
- W2244071043 cites W2080902431 @default.
- W2244071043 cites W2082548142 @default.
- W2244071043 cites W2086019018 @default.
- W2244071043 cites W2101945701 @default.
- W2244071043 cites W2114563684 @default.
- W2244071043 cites W2125644289 @default.
- W2244071043 cites W2127170577 @default.
- W2244071043 cites W2161847264 @default.
- W2244071043 cites W2210647982 @default.
- W2244071043 cites W2325172268 @default.
- W2244071043 cites W267110969 @default.
- W2244071043 cites W4249173910 @default.
- W2244071043 cites W785390788 @default.
- W2244071043 doi "https://doi.org/10.1016/j.applthermaleng.2015.11.081" @default.
- W2244071043 hasPublicationYear "2016" @default.
- W2244071043 type Work @default.
- W2244071043 sameAs 2244071043 @default.
- W2244071043 citedByCount "44" @default.
- W2244071043 countsByYear W22440710432016 @default.
- W2244071043 countsByYear W22440710432017 @default.
- W2244071043 countsByYear W22440710432018 @default.
- W2244071043 countsByYear W22440710432019 @default.
- W2244071043 countsByYear W22440710432020 @default.
- W2244071043 countsByYear W22440710432021 @default.
- W2244071043 countsByYear W22440710432022 @default.
- W2244071043 countsByYear W22440710432023 @default.
- W2244071043 crossrefType "journal-article" @default.
- W2244071043 hasAuthorship W2244071043A5003091988 @default.
- W2244071043 hasAuthorship W2244071043A5013258204 @default.
- W2244071043 hasAuthorship W2244071043A5051973071 @default.
- W2244071043 hasAuthorship W2244071043A5076204864 @default.
- W2244071043 hasAuthorship W2244071043A5086550972 @default.
- W2244071043 hasConcept C119857082 @default.
- W2244071043 hasConcept C127413603 @default.
- W2244071043 hasConcept C153294291 @default.
- W2244071043 hasConcept C154945302 @default.
- W2244071043 hasConcept C186108316 @default.
- W2244071043 hasConcept C192562407 @default.
- W2244071043 hasConcept C195975749 @default.
- W2244071043 hasConcept C200093464 @default.
- W2244071043 hasConcept C205649164 @default.
- W2244071043 hasConcept C2524010 @default.
- W2244071043 hasConcept C28719098 @default.
- W2244071043 hasConcept C33923547 @default.
- W2244071043 hasConcept C39432304 @default.
- W2244071043 hasConcept C41008148 @default.
- W2244071043 hasConcept C58166 @default.
- W2244071043 hasConcept C64900583 @default.
- W2244071043 hasConcept C81917197 @default.
- W2244071043 hasConcept C82210777 @default.
- W2244071043 hasConceptScore W2244071043C119857082 @default.
- W2244071043 hasConceptScore W2244071043C127413603 @default.
- W2244071043 hasConceptScore W2244071043C153294291 @default.
- W2244071043 hasConceptScore W2244071043C154945302 @default.
- W2244071043 hasConceptScore W2244071043C186108316 @default.
- W2244071043 hasConceptScore W2244071043C192562407 @default.
- W2244071043 hasConceptScore W2244071043C195975749 @default.
- W2244071043 hasConceptScore W2244071043C200093464 @default.
- W2244071043 hasConceptScore W2244071043C205649164 @default.
- W2244071043 hasConceptScore W2244071043C2524010 @default.
- W2244071043 hasConceptScore W2244071043C28719098 @default.
- W2244071043 hasConceptScore W2244071043C33923547 @default.
- W2244071043 hasConceptScore W2244071043C39432304 @default.
- W2244071043 hasConceptScore W2244071043C41008148 @default.
- W2244071043 hasConceptScore W2244071043C58166 @default.
- W2244071043 hasConceptScore W2244071043C64900583 @default.
- W2244071043 hasConceptScore W2244071043C81917197 @default.
- W2244071043 hasConceptScore W2244071043C82210777 @default.
- W2244071043 hasLocation W22440710431 @default.
- W2244071043 hasOpenAccess W2244071043 @default.
- W2244071043 hasPrimaryLocation W22440710431 @default.
- W2244071043 hasRelatedWork W1985487837 @default.