Matches in SemOpenAlex for { <https://semopenalex.org/work/W2244596445> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2244596445 abstract "Cluster and classification analysis are very interesting data mining topics that can be applied in many fields. Clustering includes the identification of subsets of the data that are similar. Intuitively, samples within a valid cluster are more similar to each other than they are to a sample belonging to a different cluster. Samples in the same cluster have the same label. The aim of data classification is to set up rules for the classification ofsome observations that the classes of data are supposed to be known. Here, there is a collection of classes with labels and the problem is to label a new observation or datapoint belonging to one or more classes of data. The focus of this thesis is on solvingclustering and classification problems. Specifically, we will focus on new optimizationmethods for solving clustering and classification problems. First we briefly give some data analysis background. Then a review of different methods currently available thatcan be used to solve clustering and classification problems is also given.Clustering problem is discussed as a problem of non-smooth, non-convex optimization and a new method for solving this optimization problem is developed. This optimizationproblem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and thereare no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges.This method does not explicitly use derivatives, and is particularly appropriate when functions are non-smooth. Also a new algorithm for finding the initial point is proposed.We have established that our proposed method can produce excellent results compared to those previously known methods. Results of computational experiments on real datasets present the robustness and advantage of the new method. Next the problem of data classification is studied as a problem of global, non-smooth and non-convexoptimization; this approach consists of describing clusters for the given training sets.The data vectors are assigned to the closest cluster and correspondingly to the set, which contains this cluster and an algorithm based on a derivative-free method is applied to the solution of this problem. The proposed method has been tested on real-world datasets.Results of numerical experiments have been presented which demonstrate the effectiveness of the proposed algorithm." @default.
- W2244596445 created "2016-06-24" @default.
- W2244596445 creator A5048838086 @default.
- W2244596445 date "2011-03-01" @default.
- W2244596445 modified "2023-09-28" @default.
- W2244596445 title "Application of Optimization Methods for Solving Clustering and Classification Problems" @default.
- W2244596445 hasPublicationYear "2011" @default.
- W2244596445 type Work @default.
- W2244596445 sameAs 2244596445 @default.
- W2244596445 citedByCount "0" @default.
- W2244596445 crossrefType "dissertation" @default.
- W2244596445 hasAuthorship W2244596445A5048838086 @default.
- W2244596445 hasConcept C11413529 @default.
- W2244596445 hasConcept C116834253 @default.
- W2244596445 hasConcept C119857082 @default.
- W2244596445 hasConcept C120665830 @default.
- W2244596445 hasConcept C121332964 @default.
- W2244596445 hasConcept C124101348 @default.
- W2244596445 hasConcept C137836250 @default.
- W2244596445 hasConcept C154945302 @default.
- W2244596445 hasConcept C177264268 @default.
- W2244596445 hasConcept C192209626 @default.
- W2244596445 hasConcept C199360897 @default.
- W2244596445 hasConcept C2777212361 @default.
- W2244596445 hasConcept C2780724565 @default.
- W2244596445 hasConcept C33923547 @default.
- W2244596445 hasConcept C41008148 @default.
- W2244596445 hasConcept C5274069 @default.
- W2244596445 hasConcept C59822182 @default.
- W2244596445 hasConcept C73555534 @default.
- W2244596445 hasConcept C86803240 @default.
- W2244596445 hasConceptScore W2244596445C11413529 @default.
- W2244596445 hasConceptScore W2244596445C116834253 @default.
- W2244596445 hasConceptScore W2244596445C119857082 @default.
- W2244596445 hasConceptScore W2244596445C120665830 @default.
- W2244596445 hasConceptScore W2244596445C121332964 @default.
- W2244596445 hasConceptScore W2244596445C124101348 @default.
- W2244596445 hasConceptScore W2244596445C137836250 @default.
- W2244596445 hasConceptScore W2244596445C154945302 @default.
- W2244596445 hasConceptScore W2244596445C177264268 @default.
- W2244596445 hasConceptScore W2244596445C192209626 @default.
- W2244596445 hasConceptScore W2244596445C199360897 @default.
- W2244596445 hasConceptScore W2244596445C2777212361 @default.
- W2244596445 hasConceptScore W2244596445C2780724565 @default.
- W2244596445 hasConceptScore W2244596445C33923547 @default.
- W2244596445 hasConceptScore W2244596445C41008148 @default.
- W2244596445 hasConceptScore W2244596445C5274069 @default.
- W2244596445 hasConceptScore W2244596445C59822182 @default.
- W2244596445 hasConceptScore W2244596445C73555534 @default.
- W2244596445 hasConceptScore W2244596445C86803240 @default.
- W2244596445 hasLocation W22445964451 @default.
- W2244596445 hasOpenAccess W2244596445 @default.
- W2244596445 hasPrimaryLocation W22445964451 @default.
- W2244596445 hasRelatedWork W1642010679 @default.
- W2244596445 hasRelatedWork W1892313398 @default.
- W2244596445 hasRelatedWork W1977762626 @default.
- W2244596445 hasRelatedWork W2002205743 @default.
- W2244596445 hasRelatedWork W2009341767 @default.
- W2244596445 hasRelatedWork W2104474519 @default.
- W2244596445 hasRelatedWork W2186737316 @default.
- W2244596445 hasRelatedWork W2547398736 @default.
- W2244596445 hasRelatedWork W2604018608 @default.
- W2244596445 hasRelatedWork W2724116567 @default.
- W2244596445 hasRelatedWork W2759108610 @default.
- W2244596445 hasRelatedWork W2768870137 @default.
- W2244596445 hasRelatedWork W2782461392 @default.
- W2244596445 hasRelatedWork W2802026314 @default.
- W2244596445 hasRelatedWork W2901492398 @default.
- W2244596445 hasRelatedWork W2922931220 @default.
- W2244596445 hasRelatedWork W2951240778 @default.
- W2244596445 hasRelatedWork W2995382159 @default.
- W2244596445 hasRelatedWork W3103803535 @default.
- W2244596445 hasRelatedWork W3110470031 @default.
- W2244596445 isParatext "false" @default.
- W2244596445 isRetracted "false" @default.
- W2244596445 magId "2244596445" @default.
- W2244596445 workType "dissertation" @default.