Matches in SemOpenAlex for { <https://semopenalex.org/work/W2245038139> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2245038139 abstract "Skin detection is an important preliminary step in a wide range of image processing applications such as face detection, person identification, gesture analysis and access control. Several techniques have been used for skin detection. In this thesis, the multilayer perceptron (MLP) neural network and histogram thresholding techniques were used. Recent studies have shown that combining skin features and/or skin classifiers can further improve the performance of the skin detection system. Thus, the main objective of this research is to evaluate the effect of several combination strategies on the performance of a skin detection system based on the MLP. To achieve this goal, first the histogram thresholding technique was used to select skin features (chrominance component in a given colour space) that give the highest correct skin detection. These features will be used as inputs to the MLP classifiers. A modified Growing algorithm for finding the number of neurons in the hidden layer of a neural network was also developed it was able to reduce the computational time compared to the conventional Growing algorithm. The combination strategies were done by combining the skin features as well as the skin classifiers. Three skin features (chrominance component from the selected colour space) that gave the highest correct skin detection on a single input MLP classifier were used for these strategies. The strategy of combining skin features or inputs was done using two and three skin features. For combining skin classifiers strategy, several combining rules such as binary operators AND and OR were used to combine two and three classifiers, while combining rules namely Voting, Sum of Weights and New Neural Network were used to combine three classifiers. The Sum of Weights and New Neural Network were the proposed combining rules in this thesis. In order to evaluate the performances of the skin detection systems, the images from Compaq database were used. The strategy of combining two skin features Cb/Cr gave the best performance for combining skin feature strategy with 3.01 % more correct detection compared with the best performance given by a single input MLP classifier given by Cb-Cr• The strategy of combining three classifiers using the Sum of Weights gave the best performance for its combining strategy with an improvement of 4.38% more correct detection compared to the best single input MLP classifier given by Cb-Cr• The Sum of Weights strategy also gave 1.37% more correct detection than the best combining skin feature strategy. The other proposed combining strategy called New Neural Network has managed to achieve 82.21% of correct detection. The best performance results obtained in this thesis were considerably good considering the unconstrained nature of the images from the Compaq database." @default.
- W2245038139 created "2016-06-24" @default.
- W2245038139 creator A5040496198 @default.
- W2245038139 date "2011-01-01" @default.
- W2245038139 modified "2023-09-27" @default.
- W2245038139 title "Pre-processing strategies for skin detection using MLP" @default.
- W2245038139 hasPublicationYear "2011" @default.
- W2245038139 type Work @default.
- W2245038139 sameAs 2245038139 @default.
- W2245038139 citedByCount "0" @default.
- W2245038139 crossrefType "dissertation" @default.
- W2245038139 hasAuthorship W2245038139A5040496198 @default.
- W2245038139 hasConcept C115961682 @default.
- W2245038139 hasConcept C153180895 @default.
- W2245038139 hasConcept C154945302 @default.
- W2245038139 hasConcept C163204269 @default.
- W2245038139 hasConcept C191178318 @default.
- W2245038139 hasConcept C31510193 @default.
- W2245038139 hasConcept C31972630 @default.
- W2245038139 hasConcept C41008148 @default.
- W2245038139 hasConcept C4641261 @default.
- W2245038139 hasConcept C50644808 @default.
- W2245038139 hasConcept C53533937 @default.
- W2245038139 hasConcept C73313986 @default.
- W2245038139 hasConcept C95623464 @default.
- W2245038139 hasConceptScore W2245038139C115961682 @default.
- W2245038139 hasConceptScore W2245038139C153180895 @default.
- W2245038139 hasConceptScore W2245038139C154945302 @default.
- W2245038139 hasConceptScore W2245038139C163204269 @default.
- W2245038139 hasConceptScore W2245038139C191178318 @default.
- W2245038139 hasConceptScore W2245038139C31510193 @default.
- W2245038139 hasConceptScore W2245038139C31972630 @default.
- W2245038139 hasConceptScore W2245038139C41008148 @default.
- W2245038139 hasConceptScore W2245038139C4641261 @default.
- W2245038139 hasConceptScore W2245038139C50644808 @default.
- W2245038139 hasConceptScore W2245038139C53533937 @default.
- W2245038139 hasConceptScore W2245038139C73313986 @default.
- W2245038139 hasConceptScore W2245038139C95623464 @default.
- W2245038139 hasLocation W22450381391 @default.
- W2245038139 hasOpenAccess W2245038139 @default.
- W2245038139 hasPrimaryLocation W22450381391 @default.
- W2245038139 hasRelatedWork W169282377 @default.
- W2245038139 hasRelatedWork W1986897774 @default.
- W2245038139 hasRelatedWork W2004949699 @default.
- W2245038139 hasRelatedWork W2029273149 @default.
- W2245038139 hasRelatedWork W2044103801 @default.
- W2245038139 hasRelatedWork W2081936877 @default.
- W2245038139 hasRelatedWork W2111033780 @default.
- W2245038139 hasRelatedWork W2119761601 @default.
- W2245038139 hasRelatedWork W2120239875 @default.
- W2245038139 hasRelatedWork W2130860569 @default.
- W2245038139 hasRelatedWork W2188926450 @default.
- W2245038139 hasRelatedWork W2394061572 @default.
- W2245038139 hasRelatedWork W2553546178 @default.
- W2245038139 hasRelatedWork W2607057070 @default.
- W2245038139 hasRelatedWork W2894701461 @default.
- W2245038139 hasRelatedWork W3010812223 @default.
- W2245038139 hasRelatedWork W3140364859 @default.
- W2245038139 hasRelatedWork W3211642178 @default.
- W2245038139 hasRelatedWork W39061599 @default.
- W2245038139 hasRelatedWork W2606849411 @default.
- W2245038139 isParatext "false" @default.
- W2245038139 isRetracted "false" @default.
- W2245038139 magId "2245038139" @default.
- W2245038139 workType "dissertation" @default.