Matches in SemOpenAlex for { <https://semopenalex.org/work/W2245075181> ?p ?o ?g. }
- W2245075181 abstract "We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a non-integrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of $eta gtrsim 0.25$." @default.
- W2245075181 created "2016-06-24" @default.
- W2245075181 creator A5049538020 @default.
- W2245075181 creator A5054496225 @default.
- W2245075181 creator A5057116095 @default.
- W2245075181 creator A5058444395 @default.
- W2245075181 creator A5060369783 @default.
- W2245075181 date "2015-11-02" @default.
- W2245075181 modified "2023-09-30" @default.
- W2245075181 title "Finite-temperature charge transport in the one-dimensional Hubbard model" @default.
- W2245075181 cites W1485771830 @default.
- W2245075181 cites W1568620044 @default.
- W2245075181 cites W1593097817 @default.
- W2245075181 cites W1605950061 @default.
- W2245075181 cites W1770800555 @default.
- W2245075181 cites W1774996129 @default.
- W2245075181 cites W1806543486 @default.
- W2245075181 cites W1911196020 @default.
- W2245075181 cites W1968990154 @default.
- W2245075181 cites W1970087737 @default.
- W2245075181 cites W1970727857 @default.
- W2245075181 cites W1974204995 @default.
- W2245075181 cites W1974882112 @default.
- W2245075181 cites W1980402793 @default.
- W2245075181 cites W1980551256 @default.
- W2245075181 cites W1986168108 @default.
- W2245075181 cites W1988742582 @default.
- W2245075181 cites W1989236461 @default.
- W2245075181 cites W1990285058 @default.
- W2245075181 cites W1997292933 @default.
- W2245075181 cites W2003403207 @default.
- W2245075181 cites W2007695974 @default.
- W2245075181 cites W2009961143 @default.
- W2245075181 cites W2013107996 @default.
- W2245075181 cites W2014488059 @default.
- W2245075181 cites W2015558128 @default.
- W2245075181 cites W2018169589 @default.
- W2245075181 cites W2018239548 @default.
- W2245075181 cites W2018260785 @default.
- W2245075181 cites W2021610114 @default.
- W2245075181 cites W2024694075 @default.
- W2245075181 cites W2025819980 @default.
- W2245075181 cites W2026237872 @default.
- W2245075181 cites W2027558078 @default.
- W2245075181 cites W2028532987 @default.
- W2245075181 cites W2032300065 @default.
- W2245075181 cites W2034251480 @default.
- W2245075181 cites W2034648120 @default.
- W2245075181 cites W2036586194 @default.
- W2245075181 cites W2039081246 @default.
- W2245075181 cites W2041724891 @default.
- W2245075181 cites W2042545556 @default.
- W2245075181 cites W2046885449 @default.
- W2245075181 cites W2047825592 @default.
- W2245075181 cites W2050909648 @default.
- W2245075181 cites W2056197308 @default.
- W2245075181 cites W2060152726 @default.
- W2245075181 cites W2066964797 @default.
- W2245075181 cites W2071621730 @default.
- W2245075181 cites W2072115165 @default.
- W2245075181 cites W2072410906 @default.
- W2245075181 cites W2073088061 @default.
- W2245075181 cites W2077316922 @default.
- W2245075181 cites W2082628610 @default.
- W2245075181 cites W2086612234 @default.
- W2245075181 cites W2086761776 @default.
- W2245075181 cites W2086863128 @default.
- W2245075181 cites W2087900690 @default.
- W2245075181 cites W2089946011 @default.
- W2245075181 cites W2094810855 @default.
- W2245075181 cites W2125191206 @default.
- W2245075181 cites W2127163877 @default.
- W2245075181 cites W2134316620 @default.
- W2245075181 cites W2134451689 @default.
- W2245075181 cites W2141209723 @default.
- W2245075181 cites W2145346193 @default.
- W2245075181 cites W2146347366 @default.
- W2245075181 cites W2151753022 @default.
- W2245075181 cites W2158138673 @default.
- W2245075181 cites W2158970070 @default.
- W2245075181 cites W2166587989 @default.
- W2245075181 cites W2317179621 @default.
- W2245075181 cites W2324851724 @default.
- W2245075181 cites W3021887649 @default.
- W2245075181 cites W3037704082 @default.
- W2245075181 cites W3098338237 @default.
- W2245075181 cites W3101032210 @default.
- W2245075181 cites W3102883218 @default.
- W2245075181 cites W3104428404 @default.
- W2245075181 cites W3104597548 @default.
- W2245075181 cites W3105363476 @default.
- W2245075181 cites W3105364241 @default.
- W2245075181 doi "https://doi.org/10.1103/physrevb.92.205103" @default.
- W2245075181 hasPublicationYear "2015" @default.
- W2245075181 type Work @default.
- W2245075181 sameAs 2245075181 @default.
- W2245075181 citedByCount "21" @default.
- W2245075181 countsByYear W22450751812016 @default.
- W2245075181 countsByYear W22450751812017 @default.
- W2245075181 countsByYear W22450751812018 @default.