Matches in SemOpenAlex for { <https://semopenalex.org/work/W2245321723> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2245321723 endingPage "282" @default.
- W2245321723 startingPage "271" @default.
- W2245321723 abstract "The support vector machine (SVM) classifier is currently one of the most powerful techniques for solving binary classification problems. To further increase the accuracy of an individual SVM we use an ensemble of SVMs, composed of classifiers that are as accurate and divergent as possible.We investigate the usefulness of SVM ensembles in which the classifiers differ among themselves in both the feature set and the SVM parameter value they use, which might increase the diversity among the classifiers and therefore the ensemble accuracy.We propose a novel method for building an accurate SVM ensemble. First we perform complementary feature selection methods to generate a set of feature subsets, and then for each feature subset we build a SVM classifier which uses tuned SVM parameters. The experiments show that this method achieved a higher estimated prediction accuracy in comparison to well-established approaches for building SVM ensembles, namely using a Genetic Algorithm based search to vary the classifier feature sets and using a predefined set of SVM parameter values to vary the classifier parameters.We work in a context of real-world industrial machine fault diagnosis, using 2000 examples of vibrational signals obtained from operating faulty motor pumps installed on oil platforms." @default.
- W2245321723 created "2016-06-24" @default.
- W2245321723 creator A5002706357 @default.
- W2245321723 creator A5006248455 @default.
- W2245321723 creator A5007198974 @default.
- W2245321723 creator A5074434500 @default.
- W2245321723 date "2011-01-01" @default.
- W2245321723 modified "2023-10-18" @default.
- W2245321723 title "Support Vector Machine Ensemble Based on Feature and Hyperparameter Variation for Real-World Machine Fault Diagnosis" @default.
- W2245321723 cites W1932600547 @default.
- W2245321723 cites W1987859285 @default.
- W2245321723 cites W1992018127 @default.
- W2245321723 cites W2026535637 @default.
- W2245321723 cites W2037152172 @default.
- W2245321723 cites W2056691900 @default.
- W2245321723 cites W2100421935 @default.
- W2245321723 cites W2107074288 @default.
- W2245321723 cites W2139853183 @default.
- W2245321723 cites W2158698691 @default.
- W2245321723 cites W2162935400 @default.
- W2245321723 cites W2170722606 @default.
- W2245321723 cites W2487087946 @default.
- W2245321723 doi "https://doi.org/10.1007/978-3-642-20505-7_24" @default.
- W2245321723 hasPublicationYear "2011" @default.
- W2245321723 type Work @default.
- W2245321723 sameAs 2245321723 @default.
- W2245321723 citedByCount "4" @default.
- W2245321723 countsByYear W22453217232017 @default.
- W2245321723 countsByYear W22453217232018 @default.
- W2245321723 countsByYear W22453217232022 @default.
- W2245321723 countsByYear W22453217232023 @default.
- W2245321723 crossrefType "book-chapter" @default.
- W2245321723 hasAuthorship W2245321723A5002706357 @default.
- W2245321723 hasAuthorship W2245321723A5006248455 @default.
- W2245321723 hasAuthorship W2245321723A5007198974 @default.
- W2245321723 hasAuthorship W2245321723A5074434500 @default.
- W2245321723 hasConcept C106135958 @default.
- W2245321723 hasConcept C119857082 @default.
- W2245321723 hasConcept C12267149 @default.
- W2245321723 hasConcept C125168437 @default.
- W2245321723 hasConcept C148483581 @default.
- W2245321723 hasConcept C14948415 @default.
- W2245321723 hasConcept C153180895 @default.
- W2245321723 hasConcept C154945302 @default.
- W2245321723 hasConcept C41008148 @default.
- W2245321723 hasConcept C66905080 @default.
- W2245321723 hasConcept C8642999 @default.
- W2245321723 hasConcept C95623464 @default.
- W2245321723 hasConceptScore W2245321723C106135958 @default.
- W2245321723 hasConceptScore W2245321723C119857082 @default.
- W2245321723 hasConceptScore W2245321723C12267149 @default.
- W2245321723 hasConceptScore W2245321723C125168437 @default.
- W2245321723 hasConceptScore W2245321723C148483581 @default.
- W2245321723 hasConceptScore W2245321723C14948415 @default.
- W2245321723 hasConceptScore W2245321723C153180895 @default.
- W2245321723 hasConceptScore W2245321723C154945302 @default.
- W2245321723 hasConceptScore W2245321723C41008148 @default.
- W2245321723 hasConceptScore W2245321723C66905080 @default.
- W2245321723 hasConceptScore W2245321723C8642999 @default.
- W2245321723 hasConceptScore W2245321723C95623464 @default.
- W2245321723 hasLocation W22453217231 @default.
- W2245321723 hasOpenAccess W2245321723 @default.
- W2245321723 hasPrimaryLocation W22453217231 @default.
- W2245321723 hasRelatedWork W147281455 @default.
- W2245321723 hasRelatedWork W2019129831 @default.
- W2245321723 hasRelatedWork W2119118554 @default.
- W2245321723 hasRelatedWork W2352397209 @default.
- W2245321723 hasRelatedWork W2356478727 @default.
- W2245321723 hasRelatedWork W2387907531 @default.
- W2245321723 hasRelatedWork W2544750528 @default.
- W2245321723 hasRelatedWork W2565312173 @default.
- W2245321723 hasRelatedWork W4291214623 @default.
- W2245321723 hasRelatedWork W2189588699 @default.
- W2245321723 isParatext "false" @default.
- W2245321723 isRetracted "false" @default.
- W2245321723 magId "2245321723" @default.
- W2245321723 workType "book-chapter" @default.